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Topic 3: Operation of Simple Lens
Aim: Covers imaging of simple lens using Fresnel Diffraction, resolu-
tion limits and basics of aberrations theory.

Contents:

1. Phase and Pupil Functions of a lens
2. Image of Axial Point
3. Example of Round Lens
4. Diffraction limit of lens
5. Defocus
6. The Strehl Limit
7. Other Aberrations
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Ray Model
Simple Ray Optics gives

Object

Image

u v

f

Imaging properties of
1
u +

1
v =

1
f

The focal length is given by

1
f = (n−1)

[
1
R1

+
1

R2

]

For Infinite object

Phase Shift

Ray Optics
gives Delta Fn

f

Lens introduces a path length difference, or PHASE SHIFT.
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Phase Function of a Lens

R1

P0 ∆ 1P

δ1 δ2

R2
h

n

With NO lens, Phase Shift between , P0 → P1 is

Φ = κ∆ where κ =
2π
λ

with lens in place, at distance h from optical,

Φ = κ



δ1 +δ2︸ ︷︷ ︸

Air

+n(∆−δ1−δ2︸ ︷︷ ︸

Glass

)





which can be arranged to give

Φ = κn∆−κ(n−1)(δ1 +δ2)

where δ1 and δ2 depend on h, the ray height.
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Parabolic Approximation
Lens surfaces are Spherical, but:

If R1 & R2 � h, take parabolic approximation

δ1 =
h2

2R1
and δ2 =

h2

2R2

So that

Φ(h) = κ∆n+
κh2

2 (n−1)

(
1

R1
+

1
R2

)

substituting for focal length, we get

Φ(h) = κ∆n− κh2

2 f
So in 2-dimensions, h2 = x2 + y2, so that

Φ(x,y; f ) = κ∆n−κ
(x2 + y2)

2 f
the phase function of the lens.

Note: In many cases κ∆n can be ignored since absolute phase not
usually important.

The difference between Parabolic and Spherical surfaces will be con-
sidered in the next lecture.

AP
PL

IED OPTICS GROUP

D
EPARTMENT of PHYSI

CS Properties of a Lens -4- Autumn Term



Modern Optics T
H

E

U N I V E R S I T
Y

O
F

E
D I N B U

R
G

H

Pupil Function
The pupil function is used to define the physical size and shape of the
lens.

p(x,y) ⇒ Shape of lens
so the total effect of the lens of focal length is

p(x,y)exp(ıΦ(x,y; f ))

For a circular lens of radius a,

p(x,y) = 1 if x2 + y2 ≤ a2

= 0 else

The circular lens is the most common, but all the following results
apply equally well for other shapes.

Pupil Function of a simple lens is real and positive, but it will be used
later to include aberrations, and will become complex.
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Fresnel Image of Axial Point
We will now consider the imaging of an axial point using the Fresnel
propagation equations from the last lecture.

Consider the system.

00 1P z P P’
1

z1 P
2

u  (x,y)0
u  (x,y)2f

In plane P0 we have that

u0(x,y) = A0δ(x,y)
so in plane P1 a distance z0, we have that,

u(x,y;z0) = h(x,y;z0)�A0δ(x,y)
= A0h(x,y;z0)

where h(x,y;z) is the free space impulse response function.

If we now assume that the lens is thin, then there is no diffraction
between planes, P1 and P′

1, so in P′
1 we have

u′(x,y;z0) = A0h(x,y;z0)p(x,y)exp(ıΦ(x,y; f ))
so finally in P2 a further distance z1 we have that

u2(x,y) = u′(x,y;z0)�h(x,y;z1)

= A0h(x,y;z0)p(x,y)exp(ıΦ(x,y; f ))�h(x,y;z1)
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Take the Fresnel approximation, where

h(x,y;z) =
exp(ıκz)

ıλz exp
(

ı κ
2z(x

2 + y2)

)

and

Φ(x,y; f ) = κn∆−
κ

2 f (x2 + y2)

so we get that

u(x,y;z0) =
A0 exp(ıκz0)

ıλz0
exp

(

ı κ
2z0

(x2 + y2)

)

then by more substitution,

u′(x,y;z0) =
A0 exp(ıκ(z0 +n∆))

ıλz0
p(x,y)

exp
(

ıκ
2

(
1
z0
−

1
f

)

(x2 + y2)

)

Finally!, we can substitute and expand to get

u2(x,y) =

1
︷ ︸︸ ︷

A0
λ2z0z1

exp(ıκ(z0 + z1 +n∆))

2
︷ ︸︸ ︷

exp
(

ı κ
2z1

(x2 + y2)

)

Z Z

p(s, t)

3
︷ ︸︸ ︷

exp
(

ıκ2(s2 + t2)

(
1
z0

+
1
z1
−

1
f

))

exp
(

−ı κ
z1

(sx+ ty)
)

︸ ︷︷ ︸
4

dsdt
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Look at the term:

1. Constant, amplitude gives absolute brightness, phase not mea-
surable.

2. Quadratic phase term in plane P2, no effect on intensity, and
usually ignored.

3. Quadratic phase term across the Pupil, depends on both z0 and
z1.

4. Scaled Fourier Transform of Pupil Function.

If we select the location of plane P2 such that

1
z0

+
1
z1
−

1
f = 0

Note same expression as Ray Optics, then we can write

u2(x,y) = B0 exp
(

ı κ
2z1

(x2 + y2)

)

Z Z

p(s, t)exp
(

−ı κ
z1

(sx+ ty)
)

dsdt

so in plane P2 we have the scaled Fourier Transform of the Pupil
Function, (plus phase term).

Intensity in plane P2 is thus

g(x,y) = |u2(x,y)|2

= B2
0

∣
∣
∣
∣

Z Z

p(s, t)exp
(

−ı κ
z1

(sx+ ty)
)

dsdt
∣
∣
∣
∣

2

Being the scaled power spectrum of the Pupil Function.
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Image of a Distant Object
For a distant object z0 → ∞ and z1 → f

p(x,y)

z
0

P P’11 f P2

u  (x,y)2

Then the amplitude in P2 becomes,

u2(x,y) = B0 exp
(

ı κ
2 f (x2 + y2)

)

Z Z

p(s, t)exp
(

−ıκf (sx+ ty)
)

dsdt

which being the scaled Fourier Transform of the Pupil function.

The intensity is therefore:

g(x,y) = B2
0

∣
∣
∣
∣

Z Z

p(s, t)exp
(

−ıκf (sx+ ty)
)

dsdt
∣
∣
∣
∣

2

which is known as the Point Spread Function of the lens

Key Result

Note on Units: x,y,s, t all have units of length m. Scaler Fourier
kernal is:

exp
(

−ı2π
λ f (sx+ ty)

)
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Simple Round Lens
Consider the case of round lens of radius a, amplitude in P2 then
becomes,

u2(x,y) = B̂0

Z Z

s2+t2≤a2

exp
(

−ıκf (sx+ ty)
)

dsdt

the external phase term has been absorbed into B̂0

This can be integrated, using standard results (see Physics 3 Optics
notes or tutorial solution), to give:

u2(x,0) = 2πB̂0a2
J1

(
κa
f x

)

κa
f x

where J1 is the first order Bessel Function.

This is normally normalised so that u2(0,0) = 1, and noting that the
output is circularly symmetric, we get that,

u2(x,y) = 2
J1

(
κa
f r

)

κa
f r

where x2 + y2 = r2.

The intensity PSF is then given by,

g(x,y) = 4

∣
∣
∣
∣
∣
∣

J1

(
κa
f x

)

κa
f x

∣
∣
∣
∣
∣
∣

2

which is known as the Airy Distribution, first derived in 1835.
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Shape of jinc
The function

jinc(x) =
2J1(x)

x

-0.2

0

0.2

0.4

0.6

0.8

1

-15 -10 -5 0 5 10 15

jinc(x)

Similar shape to the sinc() function, except

• Zeros at different locations.
• Lower secondary maximas

Zeros of jinc() located at

x0 3.832 1.22π
x0 7.016 2.23π
x0 10.174 3.24π
x0 13.324 4.24π
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Shape of jinc2()
The PSF function is the square of the jinc(),

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-15 -10 -5 0 5 10 15

jinc(x)**2

We get 88% of power in the central peak.

Height of secondary maximas

Order Location Height
1 5.136 0.0175
2 8.417 0.0042
3 11.620 0.0016
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Shape of PSF
The PSF is circular symmetry, being

g(x,y) = jinc2
(

κa
f r

)

g(x,y)

-8 -6 -4 -2 0 2 4 6 8 -8-6-4-20 2 4 6 8
0

1

Radius of first zero occurs at
κa
f r0 = 1.22π ⇒ r0 =

0.61λ f
a

Define: FNo as

FNo =
f

2a =
Focal Length

Diameter
Then the zero of the PSF occur at

r0 = 1.22λFNo
r1 = 2.23λFNo
r2 = 3.24λFNo

All lenses with the same FNo have the same Point Spread Function.
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Other Shaped Lenses
This method of calculating the PSF is valid for any Pupil Function, for
example a “square” lens of size 2a×2a will have a PSF

g(x,y) = sinc2
(

κa
f x

)

sinc2
(

κa
f y

)

g(x,y)

-8 -6 -4 -2 0 2 4 6 8 -8-6-4-20 2 4 6 8
0

1

with the first zeros in the x direction at:
κa
f x0 = π ⇒ x0 =

0.5λ f
a

See tutorial questions for important case of annular lens and lens with
Guassian transmission function.
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Diffraction Limit of Lens
Angular Resolution: Take two point sources (stars) at infinity sepa-
rated by ∆θ

∆θ
s

f

s = f tan∆θ ≈ f ∆θ Small ∆θ
For large ∆θ, then

s � r0 Width of PSF

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-15 -10 -5 0 5 10 15

Then two stars resolved.

While is
∆θ f � r0 See one star

Then star NOT resolved.

Note: Light from two distant stars, so Intensities will sum.
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Rayleigh Limit
Limit when start “just” resolved. For stars of equal brightness, when

s = r0 → 27% “Dip” between peaks

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-10 -5 0 5 10

-8 -6 -4 -2 0 2 4 6 8 -8-6-4-20 2 4 6 8
0

1

Stars are said to be “just” resolved.

∆θ0 f = r0 =
0.61λ f

a
giving that

∆θ0 =
0.61λ

a =
1.22λ

d
So angular resolution limit of a lens depend ONLY on it diameter.

Key Result

See tutorial questions for other configurations and lenses with differ-
ent Pupil Functions.
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Examples
Telescope: Medium size,

d = 10cm & λ = 550nm Green

Then resolution limit

∆θ0 = 6.71×10−6Rad = 1.4′′ of arc

Human Eye: in normal sunlight

d = 2mm & λ = 550nm
Then resolution limit

∆θ = 3.3×10−4Rad ≈ 1′ of arc

Actual resolution limit of eye is really limited by the spacing of cones
on the retina, and is typically 5×10−4 Rad (1mm divisions on a ruler
just resolved at 2m).

Rule of Thumb

• Resolution of eye 1’→2’ of arc.
• Resolution of telescope 1” of arc.

Aside: For all telescopes bigger than 10 cm resolution limited by
atmospheric movement, so resolution of 1” of arc is true for all optical
earth bound telescopes.
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Angular Measures
Many systems still specified in degrees, and fractions of degrees

1◦ = 2π
360Rad = 0.0174Rad

1′ = 1
60

◦
= 2.91×10−4Rad

1′′ = 1
60

′
= 4.85×10−6Rad

These measure are still in use on spectrometers, telescopes, astro-
nomical tables and maps and charts.
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Defocus of Optical System
Consider point source imaged by a lens

P0 z0 P1
z1 P2

Image is “In Focus” if
1
z0

+
1
z1

=
1
f

Move P2 system is “Defocused”.

Define Defocus Parameter, D as:

D =
1
z0

+
1
z1
−

1
f

Then if

D < 0 Negative Defocus, (z1 too large)
D > 0 Positive Defocus, (z1 too small)
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Ray Optics: Defocus system by ∆z

P z P z P0 0 1 1 2

r0
∆ z

Radius of the spot is given by similar triangles to be

r0 =
∆zd
2z1

where the lens is of diameter d. So larger defocus, large PSF. OK for
Large Defocus

Scalar Theory: From previous, if D 6= 0, then in P2,

u2(x,y) = B̂0

Z Z

EffectivePupilFunction
︷ ︸︸ ︷

p(s, t)exp
(

ıκ2D(s2 + t2)
)

exp
(

−ı κ
z1

(sx+ ty)
)

dsdt

Which is the Fourier Transform of the “Effective Pupil Function”,

q(x,y) = p(x,y)exp
(

ıκ2D(x2 + y2)
)

Pupil function goes complex under defocus.

Note: Pupil function is product so PSF is a convolution, which will be
“wider” than ideal focus.
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Wavefront Aberration
To get ideal PSF (sharp focus), we need Parabolic Wave front behind
the lens.

Actual wavefront may vary from this ideal.

W(x,y)

Actual Wavefront Actual PSF

Ideal PSFIdeal Wavefront

Define Wavefront Aberration Function as deviation from ideal parabolic
wavefront.

System Pupil Function then becomes,

q(x,y) = p(x,y)exp(ıκW (x,y))
where

W (u,v) is Wavefront Aberration Function
The Effective Pupil Function is now Complex, with the PSF given by

g(x,y) = B2
0

∣
∣
∣
∣

Z Z

q(s, t)exp
(

−ı κ
z1

(sx+ ty)
)

dsdt
∣
∣
∣
∣

2

This is a general method of dealing with all types of aberrations.
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Defocus as an Aberration
Under defocus, the wavefront aberration is

W (x,y) =
D
2

(x2 + y2)

Measure the Defocus as the extent of the wavefront aberration at the
edge of the lens, at

x2 + y2 = a2

Ideal Wavefront

Actual Wavefront

∆ W

a

Denote wavefront aberration at edge by ∆W , so wavefront aberration
is:

W (x,y) = ∆W
(

x2 + y2

a2

)

so

D =
2∆W

a2

No easy solutions for PSF under defocus.
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Strehl Limit
For small phase shifts, the PSF retains it |J(r)/r|2 shape but

• Zero do not move
• Peak value drops
• Subsidiary maximas rise

Define the Strehl Limit when central peak drops to 80% of ideal. This
occurs when phase difference

|∆Φ(r)| ≤ π
4

over the whole pupil function.

Key Result

Systems that obey the Strehl limit are have “good” imaging properties,
and is the standard design criteria for most good optical systems.

In terms of the Wavefront Aberration function,

∆Φ(x,y) = κW(x,y)
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Strehl Limit for Defocus
For defocus,

−π/4 π/4

π

a

/2

The Strehl Limit is that

∆Φmax ≤
π
2

Max phase error occurs at r = a, so

∆Φmax = κ∆W =
2π
λ

∆W

So the Stehl limit for defocus is

∆W <
λ
4

This is equivalent to a max Optical Path Difference of λ/4 over the
aperture
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Object at a Finite Distance
Image is sharp focus with Image distance z1

∆ z

z0 z1

Move image plane to z1−∆z, (∆z � z1)

D =
1
z0
−

1
f +

1
z1−∆z =

1
z1−∆z −

1
z1

≈
∆z
z2

1

This gives that

∆W =
1
2

Da2 =
∆z
2

(
a
z1

)2
<

λ
4

so the Strehl Limit gives that

∆z ≤ 1
2

(z1
a

)2
λ

Special case when object at infinity, z1 → f

∆z ≤ 1
2

(
f
a

)2
λ = 2FNo

2λ

Example:
Pocket camera, with f = 35mm and FNo = 3.5, ∆z = 13.5µm (about
half the thickness of a human hair.)
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Other Aberrations
For On-axis points, system is cylinderically symmetric, to that

W (x,y) Even powers or r
Taking terms to r4, we get

W (x,y) =
1
8S1

(x2 + y2)2

a4 +∆W (x2 + y2)

a2

The S1 term is known as Spherical Aberration.

Physical Explanation: Lens surfaces are Spherical, NOT parabolic
so outer rays focused “short”

f

∆z

Should be able to “improve” PSF by moving the image plane short of
the ideal (paraxial) focus.
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Strehl Limit for Spherical Aberration
1) No Defocus:

W (r) =
1
8

S1

( r
a

)4

Phase error then equals

∆Φ(r) = κW(r) =
π

4λ
S1

(r
a

)4

As for defocus, Strehl limit is that

∆Φmax ≤
π
2

so that the limit for Spherical Aberration is

S1 ≤ 2λ

2) With Defocus:
Able to “cancel” some of the Spherical Aberration with defocus

π/2 <π/2
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cont: We can find optimal defocus by least squares minimisation of
Z a

0
|rW (r)|2 dr

which “can-be-shown” to give the best PSF at

∆W = −
7

72S1

Minimum and maximum of phase function occurs at

r =

√

7
18

a & r = a

This gives a Strehl Limit of

S1 ≤ 5.36λ

Which is more than twice the limit if there is no defocus.

Aside: If viewed from a purely ray optics model, we get that

∆W = −
1
8

S1

and the Strehl Limit for Spherical Aberration is

S1 ≤ 7.6λ

which is a similar result.
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Off Axis Points
1) Ideal Case:
PSF moves linearly and does not change shape

a 0

0

P1P0 P2

z
z1

a2

System is said to be Space Invariant, and

a2 = −
z1
z0

a0 = −Ma0

Where M = z1/z2 is the magnification of the system.

If the Object is a δ-function at (a0,b0) then in plane P2 we get ampli-
tude

u2(x−a2,y−b2)

where u2(x,y) is amplitude for δ-function on axis and

a2 = −
z1
z0

a0 & b2 = −
z1
z0

b0
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Practical Case
Shape of Pupil function will change,

• On-axis P(x,y) is circular.
• Off-axis P(x,y) is an ellipse.

So the PSF will change.

Compound Lenses: Effective shape of Pupil Function will change
much more rapidly due to three dimensional nature of lens.

Result known as Vignetting. Major problem with very wide angle
lenses which leads to edges of image being dull.
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Off-Axis Aberrations
No cylinderical symmetry, so much more complicated aberration prob-
lems.

Range of aberrations that depend on the object location, full form for
First Order aberrations become,

W(x,y;η) =
1
2

S0

(
r2

a2

)

+
1
8

S1

(
r4

a4

)

+
1
2

S2
yr2

a3 η +

1
2

S3
y2

a2η2 +
1
4
(S3 +S4)

(
r2

a2

)

η2 +
1
2

S5
y
aη3

where the terms are

1. η Off-Axis angle as fraction of maximum
2. S0 Defocus, same a 2∆W
3. S1 Spherical Aberration
4. S2 Coma
5. S3 Astigmatism
6. S4 Field Curvature
7. S5 Distortion.

Shape of PSF under these aberrations is difficult to calculate.
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