
Quantum Theory 2015/16

Tutorial Sheet 8

8.1 Let ∆(t, t′) be the Green function for the classical one-dimensional harmonic oscillator
which satisfies(

∂2

∂t2
+ ω2

)
∆(t, t′) = −δ(t− t′) with ∆(ta, t

′) = ∆(tb, t
′) = 0 , (1)

where ta < {t, t′} < tb.

(a) Show that the solutions x−(t) and x+(t) of this equation in the regions (t < t′) and
(t > t′) satisfying the boundary conditions x−(ta) = 0 and x+(tb) = 0 respectively, are

x−(t) = A sinω(t− ta) and x+(t) = B sinω(tb − t)
where A and B are arbitrary real constants.

Choosing ∆(t, t′) to be continuous at t = t′, show by integrating Equation (1) over the
infinitesimal range t′ − ε < t < t′ + ε, that

∂∆(t, t′)

∂t

∣∣∣∣∣
t=t′+ε

− ∂∆(t, t′)

∂t

∣∣∣∣∣
t=t′−ε

= −1 .

By matching x−(t) and x+(t) and the discontinuity in their derivatives at t = t′, show
that

∆(t, t′) =
1

ω sinωT

[
θ(t− t′) sinω(tb− t) sinω(t′− ta) + θ(t′− t) sinω(t− ta) sinω(tb− t′)

]
Verify by explicit differentiation that this expression for ∆(t, t′) satisfies equation (1).

(b) Show that the classical action for the forced harmonic oscillator of Q2.3 is

S[x̄, J ] = S[x̄0, 0] +
∫ tb

ta
dt x̄0(t)J(t)− 1

2m

∫ tb

ta
dt
∫ tb

ta
dt′J(t)∆(t, t′)J(t′).

Use this to rederive the result of Q5.1, and show that

〈xb, tb|T (x̂(t1)x̂(t2))|xa, ta〉J=0 =
(
x̄0(t1)x̄0(t2) + ih̄

m
∆(t1, t2)

)
〈xb, tb|xa, ta〉J=0.

8.2 Show that ∫ dnx

(2π)n/2
exp(−1

2
xTAx+ bTx) = (detA)−1/2 exp(1

2
bTA−1b),

where x and b are real n-dimensional vectors, and A is a real symmetric matrix with
positive eigenvalues, so xTAx =

∑
ij xiAijxj etc.

Deduce that if we define

〈xi1 . . . xim〉 ≡ Z−1
∫ dnx

(2π)n/2
xi1 . . . xim exp(−1

2
xTAx),

with Z ≡ 〈1〉, then if m is odd 〈xi1 . . . xim〉 = 0, while if m is even

〈xi1 . . . xim〉 =
∑

all pairs

(A−1)j1k1 . . . (A
−1)jmkm ,

where the sum runs over all possible pairings of the m indices. Show that the number
of terms in this sum is

m!

2m/2(m/2)!

(PTO)



8.3 Consider a forced anharmonic oscillator with Lagrangian

L =
m

2
ẋ2 − m

2
ω2x2 + Jx− λ

3!
x3 .

Show that, for λ = 0,

〈0, tb|T (x̂(t1) x̂(t2) x̂(t3)) |0, ta〉J=0 = 0 ,

and that to first order in perturbation theory in λ

1

Fω(T )
〈0, tb|T (x̂(t1) x̂(t2) x̂(t3)) |0, ta〉J=0 = −iλ

h̄

tb∫
ta

dt
3∏
i=1

(
ih̄

m
∆(t, ti)

)

plus disconnected parts. Draw the relevant Feynman diagram and deduce the Feynman
rules (for J = 0).

8.4 Confirm explicitly that

∆F (t− t′) =
1

2iω
(e−iω(t−t′)θ(t− t′) + eiω(t−t′)θ(t′ − t))

is also a Green function for the classical one dimensional harmonic oscillator, vanishing
when t→∞ or t→ −∞ provided that ω has an negative (infinitesimal) imaginary part
(ω → ω − iε). Show that the Fourier transform of ∆F (t) is

∆F (E) =
1

E2 − ω2 + iε

and evaluate the inverse Fourier transform

1

2π

∫ ∞
−∞

dE
e−iEt

E2 − ω2 + iε

by contour integration to recover ∆F (t), taking care to choose the correct contour. Notice
how the iε-prescription automatically gives the Feynman Green function, just as it gave
the Schrödinger Green function.

8.5 (a) Show that for small λ

I(λ) =
∫ ∞
−∞

dxe−x
2/2−λx4 ∼

√
2π

∞∑
k=0

(−)k(4k)!

4kk!(2k)!
λk.

(b) Use Stirling’s formula to show that the coefficient of λk in this expansion goes as
(−16k/e)k for large k, and thus that the series diverges.

(c) How could you have guessed that the series would diverge just by looking at the
integral? What does this suggest for the convergence (or otherwise) of any perturbation
series in quantum mechanics?

[Hint: is I(λ) analytic in a neighbourhood of the origin?]


