5 Convolution of Two Functions

The concept of convolution is central to Fourier theory and the analysis of Linear Systems. In
fact the convolution property is what really makes Fourier methods useful. In one dimension
the convolution between two functions, f(x) and h(x) is defined as:

oo

800 = FOh(x) = [ f()hx—s)ds 1)
where s is a dummy variable of integration. This operation may be considered the area of
overlap between the function f(x) and the spatially reversed version of the function i(x). The
result of the convolution of two simple one dimensional functions is shown in figure [Il
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Figure 1: Convolution of two simple functions.

The Convolution Theorem relates the convolution between the real space domain to a multipli-
cation in the Fourier domain, and can be written as;

G(u) =F(u) H(u) 2)
where

Gu) = F{g)}
Flu) = F{f(x)}
H(u) = F{n(x)}
This is the most important result in this booklet and will be used extensively in all three courses.

This concept may appear a bit abstract at the moment but there will be extensive illustrations
of convolution throughout the courses.
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5.1 Simple Properties

The convolution is a linear operation which is distributative, so that for three functions f(x),
g(x) and h(x) we have that

f(x) ©(g(x) ©h(x)) = (f(x) ©g(x)) ©h(x) 3)
and commutative, so that
J(x) ©h(x) =h(x) © f(x) 4)

If the two functions f(x) and h(x) are of finite extent, (are zero outwith a finite range of x),
then the extent (or widrh) of the convolution g(x) is given by the sum of the widths the two
functions. For example if figure [l both f(x) and h(x) non-zero over the finite range x = +1
which the convolution g(x) is non-zero over the range x = 4-2. This property will be used in
optical image formation and in the practical implication of convolution filters in digital image
processing.

The special case of the convolution of a function with a Comb(x) function results in replication
of the function at the comb spacing as shown in figure 2l Clearly if the extent of the function is
less than the comb spacing, as shown in this figure, the replications are separated, while if the
the extent of the function is greater than the comb period, overlap of adjacent replications will
occur. This operation is central to sampling theory, and image formation and will be discussed
in details in the relevant courses. This idea is also central to Solid State Physics where the
electron density of a unit cell is convolved with the lattice sites.
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Figure 2: Convolution of function with comb of d-functions.

5.2 Two Dimensional Convolution

As with Fourier Transform the extension to two-dimensions is simple with,

8(6y) = F63) ©hixy) = [ [ F(s.0)hx—s.y=1)dsa ®
which in the Fourier domain gives the important result that,
G(u,v) = F(u,v) H(u,v) (6)

This relation is fundamental to both optics and image processing and will be used extensively
in the both courses.

The most important implication of the Convolution Theorem is that,

Multiplication in Real Space <= Convolution in Fourier Space
Convolution in Real Space <= Multiplication in Fourier Space

which is a Key Result.
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6 Correlation of Two Functions

A closely related operation to Convolution is the operation of Correlation of two functions. In
Correlation two function are shifted and the area of overlap formed by integration, but this time
without the spatial reversal involved in convolution. The Correlation between two function f(x)
and h(x) is given by

) = W) @ hx) = [ Fl (s —x)ds ™
where h*(x) is the complex conjugate of h(x)ﬂ This operation is shown for two simple func-
tions in figure Bl Comparison between the convolution in figure [ and the correlation shown

that the only difference is that the second function is not spatially reversed and the direction of
the shift is changed.
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Figure 3: Correlation of two simple functions.

x<0

Of more importance, if we consider f(x) to be the “signal” and i(x) to be the “target” then we
see that the correlation gives a peak where the “signal” matches the “target”. This gives the
basis of the simples method of target detectio

In the Fourier Domain the Correlation Theorem becomes
C(u) =F(u) H" (u) (8)
where
Clu) = F{cx)}
11t should be noted that for a real function complex conjugation does not effect the function, so if both f(x)
and h(x) are real then the Convolution and Correlation differ only by a change of sign, which represents the spatial

reversal on one of the functions.
’The two-dimensional version of this is considered in question 9.
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Fu) = F{f(x)}
H(u) = F{h(x)}

It should be noted that the Fourier Transform H(u) is generally complex, and the complex
conjugation is of vital significance to the operation.

This is again a linear operation, which is distributative, but however is not commutative, since
if

c(x) = f(x) @ h(x)
then we can show that

h(x) @ f(x) = ¢*(—x)

In two dimensions we have the correlation between two functions given by

() = fe) ©hxy) = [ [ Flsn(s=xa=y)dsa ©

which in Fourier space gives,
C(u,v) = F(u,v) H (u,v) (10)

Correlation is used in optics to to characterise the incoherent optical properties of a system and
in digital imaging as a measure of the “similarity” between two images.
6.1 Autocorrelation

If we consider the special case of correlation with two identical real space functions, we obtain
the correlation of the input function with itself, being known as the Autocorrelation, being,

a(x,y) = f(x,y) @ f(x,y) (11)
so that in Fourier space we have,
A(u,v) = F(u,v) F*(u,v) = [F (u,v)? (12)

which is the Power Spectrum of the function f(x,y). Therefore the Autocorrelation of a func-
tion is given by the Inverse Fourier Transform of the Power Spectrum, giving,

a(x,y)z}’_l{\F(u,vﬂz} (13)
In this case the correlation must be commutative, so we have that
a*(—x, _y) = a(x,y)

If in addition the function f(x) is real, then clearly the correlation of a real function with it self
is real, so that a(x) is real. Therefore for a real function the autocorrelation is symmetric.
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