
JAVA -1

FFT Classes for Java
Will Hossack, The University of Edinburgh

2 Introduction
The JFFTW package is a partial simple JNI interface to the C-callable FFTW3 library. The
FFTW3 library is an extensive and highly optimised FFT library by Matteo Frigo and Steven
Johnson from the Department of Applied Mathematics, MIT, This library has multiple internal
algorithms and gives optimal performance on a vast range of processor types, and more signif-
icantly gives N log2(N) performance for any length of FFT, including prime numbers, and not
just for highly factorisable lengths. It is also very flexible designed to take FFT of almost any
data configuration, with one, two, three dimensional transform of complex or real data packed
in variety of formats.
This JAVA package implements a sub-set of the library and in particular concentrates on one-
off FFTs and does not save plans between calls. For multiple FFTs this is computationally
sub-optimal but vastly simplifies the calling procedure. In practise most JAVA programs are
interactive and efficiency is not really an issue, if you want to take vast numbers of FFTs of
large amount of data, you should use C and make direct calls to the FFTW3 library.
This package has two interfaces, these being:

1. DataArray class, and its extending classes of RealDataArray and ComplexDataArray.
This is for user who want the simplest use and are happy to write their programs to use
theses supplied classes to handle their data. Such users should read-up about the Complex
class and DataArray, and should not need to get their hands dirty with FFTW at all.
The DataArray classes also have extensive access methods with sanity checking of the
supplied parameters. This does however have a significant efficiency overhead, but does
increase the probability of your program actually working!

2. FFTW class and its extending classes FFTWReal and FFTWComplex operates on raw double
arrays where the user is responsible for pack and understanding what they send to the
underlying library. This is more efficiency and flexible, but rather harder work and
more error prone, especially for real-data FFTs. To make life a bit easier there is also
a ArrayUtil class help with some of the array manipulation.

Since the JAVA interface calls an underlying native C-library, getting the parameters wrong can
result is some interesting effects, usually the whole JRE environment crashing in a messy heap!
This is really a feature of C-code, and while the JAVA interface tries to trap the most common
errors, a dedicated programmer will manage to to create such crashes, which come under the
class of probable user error!.; so don’t report them until you are really certain you have the
call right!
The full JAVADOC and examples are available from the package HOMEPAGE.

3 Use of Package
On the local CPLab systems, jfftw is already in your CLASSPATH so to use it you just need to
put

School of Physics Java Support Revised: 22 May 2007

http://www.fftw.org
http://www.ph.ed.ac.uk/~wjh/teaching/Java/fft/

JAVA -2

import jfftw.*;

at the top of your source code. In addition you must set the Unix environmental variable
LD LIBRARY PATH so that the low-level interface is loaded. This is best done by adding the
line

export LD_LIBRARY_PATH=/ifp/java/lib/

to your .bashrc file1. You can test that this has worked by typing

echo LD_LIBRARY_PATH

at the command line. If you fail to do this you will get an UnsatisfiedLinkException when
you try and run your program.
For people wanting to use this on other machines, you can download the package source from
the package homepage, unpack and install. There are elementary instructions in the included
README file aimed at LINUX systems; other will follow, if I ever have the effort and inclination!

3.1 Speed and Size
The Fourier transform is an intrinsically numerically intensive algorithm and taking very large
FFTs with tax even the largest of system. The Fast bit of FFT is when compared to the direct
implementation of the discrete digital Fourier transform, which even for modest amount of
data, is unusably slow.
JAVA is as resource extravagant with memory as with other things and by default (on Unix)
system has a maximum memory heap of 256 Mbytes. By the time JAVA has it slice, this is
sufficient to take one two-dimensional complex FFT of approximately 1500×1500; any larger2

resulting in OutOfMemoryError run-time error. The memory maximum can be increase with
the -Xmx<nnn>M flag, so that

java -Xmx512M MyJavaApp

with run MyJavaApp with a 512Mbyte memory heap.
The question “how big and how fast” is limited by two things, firstly raw floating point CPU
speed, but more importantly memory bandwidth since the data being transformed is accessed
almost continually in (almost) random order. To get any sensibly performance it is essential
that all the data is resident in physical memory and is not being swapped to/from disc. On most
normal desktop systems with IDE hard drives, swapping data to disk is totally catastrophic3 and
can result in FFT taking 100 of times longer than predicted while simultaneously rendering the
system unusable due to swap-thrashing4. If you find this occurs; its obvious the disc activity
light is solidly “on” and the system does not respond to the keyboard or mouse!; then try
shutting down all other memory hungry processes, for example Firefox, OpenOffice etc. If this
does not help, then your only solution is to fit more physical memory.

1This first time you do this you must logout and login again!
2Java code with extensive graphics will fail before this.
3Systems with SCSI fair a bit better.
4All the system is doing is swapping the data to/from disc and is not able to do anything else.

School of Physics Java Support Revised: 22 May 2007

JAVA -3

4 Complex class
Any work with Fourier Transform involves complex numbers, which in this package are dealt
with by the Complex class. This holds a complex at two doubles being the real and imaginary
part. This class has a set of support methods to perform most common complex arithmetic
operations. This Complex class has been written with ease of use in mind and not efficiency,
given this performance with modern version of JDK appear to be very respectable.

Constructors
There are four constructors for the Complex class being:

1. Complex() to create a Complex with real and imaginary parts set to zero.

2. Complex(double a, double b) to create a Complex with real set to a and imaginary
set to b.

3. Complex(double a) to create a Complex with real set to a and imaginary set to zero.

4. Complex(Complex c) to create a Complex with real and imaginary parts being set by c.

In addition this class implements Cloneable, with method

• Complex clone() which return a clone of the current Complex where both real and
imaginary parts are copied.

4.1 Setters
The internal variables can be set by following methods:

1. void set(double a, double b) set real part to a and imaginary part to b.

2. void set(Complex c) sets the real and imaginary parts to the same value as the real
and imaginary parts of c.

3. void setReal(double a) sets the real part to a, and does not alter the imaginary part.

4. void setImag(double b) sets the imaginary part to b, and does not alter the real part.

5. void setPolar(double rho, double theta) sets real and imaginary parts with po-
lar coordinates, so setting

real = ρcos(θ) and imag = ρsin(θ)

6. void setExpi(double theta) sets the Complex to exp(ıθ).

7. void setRandomPhase(double m) set the Complex number to have specified modulus
m but the phase set randomly in the range 0 → 2π, with a flat random distribution given
by Math.random().

8. void setInvalid() sets both real and imaginary parts to Double.NaN.

School of Physics Java Support Revised: 22 May 2007

JAVA -4

Getters
The following methods to get information about the Complex, these being:

1. double getReal() return the real part of the Complex.

2. double getImag() return the imaginary part of the Complex.

3. double modulusSq() returns the modulus square of the Complex.

4. double modulus() returns the modulus of the Complex. This uses the simple
√

a2 +b2

scheme for speed since, as of JAVA 1.5 Math.hypot is very very slow.

5. double phase() returns the phase of the Complex as defined for complex a + ıb by
Math.atan2(b,a).

6. double logPower() return the log of the power, which for number a+ ıb is defined as

log
(

a2 +b2 +1.0
)

where the the +1.0 prevents −∞ for a square modulus of zero.

7. double getDouble(int flag) returns a double converted from the Complex as de-
fined by the flag with

flag Value
Complex.REAL Real part
Complex.IMAG Imaginary part
Complex.MODULUS Modulus
Complex.MODULUS SQUARED Modulus squared
Complex.PHASE Phase
Complex.LOG POWER Log power

8. boolean inNaN() returns true if either real or imaginary parts set to Double.NaN, see
setInvalid().

9. String toString() returns Complex as a formatted String of the for [a.aaaa,b.bbbb]
where the format of the each number is controlled by setFormatString below.

10. void setFormatSting(String fmt) sets the format String used in toString() used
by String.format(). the default is "%g".

The internal real and imaginary double are protected being only available to extending
classes; see the JAVADOC for details.

Three Parameter Arithmetic
These methods perform the basic Complex arithmetic and return a new Complex object without
affecting either the current Complex or the parameter(s). These are:

1. Complex plus(Complex c) add Complex c to current Complex.

School of Physics Java Support Revised: 22 May 2007

http://www.ph.ed.ac.uk/~wjh/java/docs/jfftw/

JAVA -5

2. Complex plus(double a, double b) add Complex specified by real and imaginary
parts.

3. Complex plus(double a) add real value to the real part, imaginary kept from current.

4. Complex minus(Complex c) subtract Complex c from current Complex.

5. Complex minus(double a , double b) subtract Complex specified by real and imag-
inary parts.

6. Complex minus(double a) subtract real value from real part, imaginary kept from cur-
rent.

7. Complex from(Complex c) subtract current Complex from specified Complex c.

8. Complex from(double a , double b) subtract current Complex from Complex spec-
ified by real and imaginary parts.

9. Complex from(double a) subtract current Complex from real, imaginary will be neg-
ative of current.

10. Complex mult(double a) multiply current Complex by double a.

11. Complex mult(Complex c) multiple current Complex by specified Complex c.

12. Complex mult(double a, double b) multiply current Complex by specified Com-
plex given as real and imaginary parts.

13. Complex multConj(Complex c) multiple current Complex by conjugate of specified
Complex c.

14. Complex over(double a) divide current Complex by a double a.

15. Complex over(double a, double b) divide current Complex by Complex specified
at two doubles.

16. Complex over(double a, double b) divide current Complex by specified Complex
c.

17. Complex under(double a) divide the specified double a by the current Complex.

18. Complex under(Complex c) divide the specified Complex c by the current Complex.

Since these method always return a new Complex they can be chained for example,

Complex a = new Complex(3.0,4.5);
Complex b = new Complex(2.0,6.0);
Complex d = new Complex(7.0,10.0);

Complex d = a.mult(b).plus(c);

will give d = a×b+ c without altering the contents of a,b,c.

School of Physics Java Support Revised: 22 May 2007

JAVA -6

Two Parameter Arithmetic
These methods perform “in place” arithmetic on the current Complex and are much more com-
putational efficient that the three parameter versions since they do not allocate new memory.
Here there is a less extensive set, these being:

1. addTo(Complex c) add c to the current Complex.

2. addTo(double r, double i) add complex a+ ıb to current Complex.

3. multBy(double a) multiply current complex by real a.

4. multBy(Complex c) multiply current complex by c.

5. void multBy(double a, double b) multiply current complex by a+ ıb.

As the code is developed, additional method will be added which will and documented in the
JAVADOC.

School of Physics Java Support Revised: 22 May 2007

JAVA -7

DataArray Class
The DataArray class simplify the calling and data handling in the jfftw package, and via
its extending classes of RealDataArray and ComplexDataArray supports one, two and three
dimensional real and complex data sets. Internally the data is held as one-dimensional array
of double[], with, for Complex types, being held in interleaved format, however the support
method hide much of the complex access and indexing problems; it also does extensive array
bound checking and sanity checking of parameters. This does however come at a considerable
cost in efficiency. People worried about5 should consider the lower level FFTW interface.
DataArray is itself is declared as abstract, with all the user access via it extending classes,
which deal with real or complex data.

ComplexDataArray Class
This is an extending class to deal with Complex data in both real and Fourier space. This is by
far the simplest method of use where you get exactly what you expect. Novice users are very
strongly encouraged to use this class even if their data in real space is real only; remember the
Fourier transform of real data is complex.

Constructors

This class has the following constructors to create ComplexDataArrays, these being,

1. ComplexDataArray(int width) create a one-dimensional ComplexDataArray of spec-
ified width with all elements set to zero.

2. ComplexDataArray(int width, int height) create a two-dimensional ComplexDataArray
of specified width×height with all elements set to zero.

3. ComplexDataArray(int width, int height, int depth) create a three-dimensional
ComplexDataArray of specified width×height×depth with all elements set to zero.

4. ComplexDataArray(ComplexDataArray data) creates a new ComplexDataArray be-
ing a copy or clone of the specified ComplexDataArray.

5. ComplexDataArray(RealDataArray data) creates a new ComplexDataArray of the
same dimensions of the RealDataArray with its data used to set the Real Part of the
complex elements. The RealDataArraymust be in real space or an IllegalArgumentException
is thrown.

6. ComplexDataArray(int w, int h, int d, double[] da) creates a ComplexDataArray
of specified dimensions and used the supplied one-dimensional double[] array as the
internal data buffer which is assumed to be formatted correctly. This will fail with
IllegalArgumentException if da.length != 2*w*h*d.
Note for two-dimensional data set d=1 and for one-dimensional data set h=1 and d = 1.

In addition there is the clone() method,
5If you are really worried about efficiency, call FFTW direct from “C”.

School of Physics Java Support Revised: 22 May 2007

JAVA -8

• ComplexDataArray clone() which gives a deep clone including a clone of the under-
lying data.

Getters

The basic getters to get information about the internals of the class and are:

1. getSpace() get the space, either FFTW.REAL or FFTW.FOURIER.

2. int getWidth() get the width in pixels.

3. int getHeight() get the height in pixels, will be 1 if one-dimensional DataArray.

4. int getDepth() get the depth in pixels, will be 1 if one or two-dimensional DataArray.

5. String toString() gets information about array type, width, height, depth and current
space as a formatted String.

6. boolean getNormalisation() whether automatic normalisation on inverse Fourier is
active, default is true, see details under fourier().

7. int getConversion() gets to Complex to double conversion flag, see details under
getDouble() below.

8. int length() get the length of the internal double data buffer.

9. double[] getDataBuffer() get the internal double data buffer for direct access of the
interleaved array. Experts only here, if you are calling this, seriously consider using the
direct FFTW interface.

10. FFTWComplex getFFTW() get the underlying FFTWComplex object again not normally
called by users.

For all setter and getters there are three version of each to deal with one, two and three dimen-
sional underlying structures. They all have the same structure being,

1. get<value>(int i) in one-dimensions for i < getWidth()

2. get<value>(int i, int j) in two-dimensions. with i < getWidth() and j < getHeight().

3. get<value>(int i, int j, int k) in three-dimensions. with i < getWidth(), j
< getHeight() and k < getDepth().

with array subscript checking. Only the one-dimensional version will be documented here, but
all three versions are available.
The getters to access the data as complex are:

1. Complex getComplex(int i) get the i complex element in one-dimensions for i <
getWidth()

while the corresponding getter to get the data as doubles are

School of Physics Java Support Revised: 22 May 2007

JAVA -9

1. double getDouble(int i) get the i Complex as a double, element in one-dimensions
for i < getWidth()

The Complex to double conversion is controlled by the conversion flag, which must be one on
the six possible defined under Complex.getDouble(). This defaults to Complex.MODULUS so
giving the modulus of the Complex.

Setters

The control setters are

1. setSpace(int space) manually set the space to either FFTW.REAL or FFTW.FOURIER.
A creation this defaults FFTW.REAL and is then automatically controlled by calls to
fourier().
Note this does not perform a Fourier transform, see fourier().

2. setNormalisation(boolean n) controls the normalisation on inverse Fourier trans-
forms, but default set to true.

3. setConversion(int flag) set the Complex to double conversion used by getDouble().
Defaults to Complex.MODULUS, and can be set any of the flags defined in Complex.

4. setDimensions(int w, int h, int d) set the dimensions used to access the data
array without sanity checking. Normally used in conjunction with setDataBuffer with
extreme care!

5. setDataBuffer(double db[]) set the internal databuffer to the specified double[]
array. This must be consistent with the current dimensions and of the correct structure. If
you are using this, really think about using the direct FFTWComplex classes.

As with the getters above, only the one-dimensional version is documented here, but there
are exact, and obvious equivalence for two and three dimensional again with full array bound
checking.

1. void setComplex(int i, double a, double b) set the i elements in one-dimensions
with real a and imaginary b.

2. void setComplex(int i, Complex c) set the i elements in one-dimensions with Com-
plex c.

and the corresponding double are

1. setDouble(int i, double a) set the real part of i element.

where is all cases the imaginary element is not altered.
All the setComplex and setDouble have array bounds checking and will throw ArrayIndexOutOfBoundsException
if out of bounds.

School of Physics Java Support Revised: 22 May 2007

JAVA -10

Data Element Manipulation
There are a set of method to modify the current values of the data elements. Only the one-
dimensional versions are listed here but there are exact equivalent for two and three dimensions.

1. add(int i, double a) add double a to the current i element in one-dimensions.

2. add(int i, double a, double b) add a+ıb to the current i element in one-dimensions.

3. add(int, Complex c) add Complex c to the current i element in one-dimensions.

4. mult(int i, double a) multiply the current i element by a.

5. mult(int i, double a, double b) multiply the current i by element by a+ ıb.

6. mult(int i, Complex c) multiply the current i by element by Complex c.

7. conjugate(int i) take the conjugate of the i, this will be ignored if the data is real.

Array Data Manipulation
These methods act on the whole array. These methods use well optimised code so, espe-
cially for large array, should be used rather than writing your own using getComplex() and
setComplex().

1. conjugate() forms the complex conjugate by negating the imaginary parts of all ele-
ments. In data is real this is ignored.

2. mult(double a) multiplies all elements by a scalar.

3. mult(double a, double b) multiplies all elements by a complex specified at two dou-
bles. This will fail for real only data.

4. mult(Complex c) multiple all elements by a Complex. This will fail for real only data.

5. mult(DataArray d) multiplier’s the current array by the specified DataArray on a
point by point basis. Both DataArray must be same dimensions and may be type
RealDataArray or ComplexDataArray.

6. RealDataArray getRealDataArray(int conversion) returns the current ComplexDataArray
as a RealDataArray (in real space), where where the Complex to double conversion is
controlled by int conversion which can be any of the Complex conversion flag.

7. RealDataArray getRealDataArray() as above, but uses the internal conversion flag
set by setConversion(int flag) method.

School of Physics Java Support Revised: 22 May 2007

JAVA -11

The Fourier Methods
Now finally to the Fourier methods,

1. void fourier() takes the normal Fourier transform overwriting the current data with
its Fourier transform. If the data is in real space a forward transform will be taken and
the space switched to fourier space. If the data is in fourier the inverse will be take. In
both cases the space flag accessed via getSpace() is correctly set.
The default is to normalise the Fourier transform on inverse only, so in one-dimensions
for a complex samples signal f (i) of length N is, the forward one-dimensional transform
given by,

F(k) =
N−1
∑
i=0

f (i) exp
(

−ı2π
i k
N

)

where ı =
√
−1 and the inverse transform is

f (i) =
1
N

N−1
∑
k=0

F(k) exp
(

ı2π
i k
N

)

This behaviour can be altered by setNormalisation(boolean n) which if set to false
then no normalisation will occur, which is the FFTW default.

2. void centreFourier() takes to centred Fourier transform with the zero frequency
shifted to the centre (N/2) element, for more generally width/2,height/2,depth/2
element, where all dimensional are assumed by be even. The shift is done by pre-
multiplication by a ±1 checker pattern using method checker() so is reversible, with
two calls to centreFourier() returning the data to its original state6. This method also
behaves exactly like fourier() with the same forward/inverse and normalisation rules.

3. RealDataArray powerSpectrum(boolean logPower) returns the power spectrum, be-
ing the square modulus of the Fourier transform as a RealDataArray. If the current
DataArray is in real space, a centreFourier() is applied automatically, and the data
left in Fourier space. The boolean logPower controls whether the power (modulus
squared) or log(|F(k)|2 +1) is returned.

For examples of how to use this class see the package HOMEPAGE

5 RealDataArray class
Most input data is real, be that signals in one-dimensional, images in two-dimensions or crystal
structures in three-dimensions. However despite the input being real the Fourier transform will
always be Complex, in this this case with Hermition symmetry. Since the Fourier transform
is unitary then we should have the same number of data elements in real and Fourier space;
however due to the packing scheme used within the FFTW library the Fourier space represen-
tation take slightly more space than the real. This can be overcome in C by over-allocation of
memory in real space, but with JAVA’s strict array-bound checking, this is much more diffi-
cult. Therefore this interface does not implement in-place real transforms but always returns

6This checker scheme only works for even array sizes.

School of Physics Java Support Revised: 22 May 2007

http://www.ph.ed.ac.uk/~wjh/teaching/Java/fft/

JAVA -12

the transforms results in newly allocated memory. This is more expensive in memory alloca-
tion, but from initial timing, does not appear to have a significant computational penalty7. The
RealDataArray class tries to handle this in an intelligent way without the used being aware of
what is happening, but at times care has to be taken.

Data packing in Real and Fourier Space
In real space the data is packed in a double[] array in row order so a three-dimensional data set
is held in an array of length width*height*depth. However in Fourier space slight more than
half of the Fourier space is needed and the data is packed in interleaved format in Complex
array of dimensions width/2+1,height,depth. See the section on FFTWReal for detailed
description of why this occurs.

Constructors

All the constructors are in real space, these being,

1. RealDataArray(int width) one-dimensional RealDataArray of length width.

2. RealDataArray(int width,int height) two-dimensional RealDataArray of size
width by height.

3. RealDataArray(int width, int height, int depth) three-dimensional RealDataArray
of size width, height by depth.

4. public RealDataArray(RealDataArray da) forms a RealDataArray taking all pa-
rameters from the specified RealDataArray. This constructor will also work for da
being in Fourier space.

5. RealDataArray(int w, int h, int d, double[] data) forms DataArray of spec-
ified dimensions with the specified double[] data buffer. Only the size of the double[]
array is checked with must be w*h*d.

Getter

The basic information getters is identical to the ComplexDataArray getters except,

1. getWidth() gets the width of the data as declared in real space.

2. getCurrentWidth() gives the current width of the data, which is real space is the same
as getWidth() but in Fourier space will be getWidth()/2 + 1. See section on Fourier
data structure for details of why.

3. int length() length of current databuffer, this will change between real and fourier
space.

4. double[] getDataBuffer() will get the current databuffer but its location, and size
will change between real and fourier space.

7It is considerably faster to take real transforms than to consider real data as being complex with the imaginary
part being zero.

School of Physics Java Support Revised: 22 May 2007

JAVA -13

The data getters have the same call as for ComplexDataArray, but do different things in real
and Fourier space,

1. double getDouble(int i), getDouble(int i, int j), getDouble(int i, int
j, int k)

(a) Real Space gets data element over the range given by getWidth(), getHeight(),
getDepth().

(b) Fourier Space get the double value of the complex element using the current con-
version flag. Here the range is getCurrentWidth(), getHeight(), getDepth().

2. Complex getComplex(), getComplex(int i, int j), getComplex(int i, int j,
int k)

(a) Fourier Space get the Complex value of the element in the range is getCurrentWidth(),
getHeight(), getDepth().

(b) Real Space gets the Complex version of type real data with the imaginary part set
to zero. Here the range is getWidth(), getHeight(), getDepth().

Setters

The control setter are identical to those for ComplexDataArray, except remember now since
real and fourier space have a different structure, but setSpace() does not change the structure
of the data, so careless use of this will almost always be disastrous!.
The data setters are again the same at for ComplexDataArray but again as the with the getters,
when in real space the width of the data is width, and should be set by setDouble() while
in Fourier space it is width/2 + 1 and is normally set by setComplex(). In both cases the
method getCurrentWidth() will always return the correct width.

5.0.1 Data Element Manipulation

Again the methods and parameters are identical to the ComplexDataArray expect as with the
GETTERS and SETTERS the data width is different in real and Fourier space.

5.0.2 Array Data Manipulation

Here again, all all the methods are the same with the same parameters, but:

1. conjugate() does noting if in real space. There is no error flagged.

2. mult(DataArray d) the sizes of d must the current DataArray so must be different for
real and fourier space. Also if the current RealDataArray is in real space d must also be
a RealDataArray in real space.

3. RealDataArray getRealDataArray() if in real space, the current DataArray will be
returned unaltered, but if in fourier space it will return a new RealDataArray in real
space of being the getCurrentWidth() of current DataArray.

School of Physics Java Support Revised: 22 May 2007

JAVA -14

The Fourier Methods
Again these look superficially the same as the ComplexDataClass but extra care has to be
taken.

1. fourier() takes the normal Fourier transform, but in fourier space there is half the fre-
quency range, with the other half given by the Hermition symmetry of Fourier transforms
of real data. The first index range is therefore halved8. If the width of the input data is N
then the Fourier width will be N/2+1, and also element 0 and N/2 will be real only.

2. centreFourier() will shift the zero frequency exactly as for the ComplexDataArray,
again being valid only for even sizes data.

3. RealDataArray powerSpectrum(boolean logpower) returns a RealDataArray of
the size of the Fourier transform, so with the first index halved.

8Due to the FFTW packing there is actually one apparent extra element.

School of Physics Java Support Revised: 22 May 2007

JAVA -15

jfftw Package
The FFTW classes give lower level access library and are accessed through the two extend-
ing classes being FFTWComplex for complex-to-complex transforms and FFTWReal for real-
to-complex transforms. These classes operate directly on double[] arrays and the user is
responsible for all data packing and unpacking.
Using these classes is more efficient than the DataArray classes mainly since there is no array
range checking and the internals are almost totally free of setter/getter indirections. However
all FFTs are still executed as one-off with no re-use of FFTW plans. This still makes then much
less efficient that real “C-code”

FFTWComplex Class
The extending class take complex FFT where the data is packed in one of two possible formats,
these being:

1. interleaved where the complex data is packing in a single one-dimensional double[]
array with complex pairs in adjacent elements with real values are in the even elements
and imaginary in the odd elements.

2. split where the real and imaging data is packed in two-dimensional double[][] array
where for the ith complex value the real part is held in element [0][i] and the imaginary
part in element [1][i].

In both cased multi-dimensional data is held in the the same array dimensions as detailed in the
calls.

Constructors

There are four possible constructors, these being:

1. FFTWComplex() default constructor that initialises the package with default settings and
loads the native interface library.

2. FFTWComplex(boolean systemWisdom) as default constructor but also loads the system-
wide wisdom file, advanced section for details.

3. FFTWComplex(File wisdomFile), as default constructor but also loads personal wis-
dom file by File.

4. FFTWComplex(String wisdomFile), as default constructor but also loads personal wis-
dom file by file name.

Most users will either use default constructor, or will load system wide wisdom file, if it is
available.

School of Physics Java Support Revised: 22 May 2007

JAVA -16

One-Dimensional Complex FFTs

There are two possible method to take one dimensional FFT.

double[] oneDimensional(double data[], int dirn, boolean overwrite)

for interleaved data array, where,

• data is a one-dimensional interleaved double array that contains the complex data with
real and imaginary parts in adjacent elements.

• dirn integer to specify the direction of transform, FFTW.FORWARD for forward transform,
FFTW.BACKWARD for inverse. These constants are just 1 and −1 respectively.

• overwrite boolean that determines if the FFT will overwrite the input data or will be
returned in a new double array without changing the input data array.

• returns a double[] array containing the FFT of the data, again of length 2N with the
real and imaginary parts in adjacent elements, so a that

FR(k) = data[2∗k] and FI(k) = data[2∗k+1]

if overwrite is true this will be in the same array as the input data, so overwriting it,
while if false it will be in a newly allocated double[] array.

The corresponding call for split data is:

double[][] oneDimensional(double[][] data, int dirn, boolean overwrite)

where

1. data is a two-dimensioal split double[][]array with real parts in elements [0][i] and
the corresponding imaginary part in [1][i].

2. dirn direction ±1 as above.

3. overwrite controls overwrite as above.

4. returns a double[][] of same size as input containing the FFT in locations,

FR(k) = data[0][k] and FI(k) = data[1][k]

If overwrite is true this be the same array as the input and the elements will be over-
written, while if false a new double[][] will be created and the input array unaltered.

What is really calculates, for a complex samples signal f (i) of length N is, the forward trans-
form given by,

F(k) =
N−1
∑
i=0

f (i) exp
(

−ı2π
i k
N

)

where ı =
√
−1 and the inverse transform is

f (i) =
N−1
∑
k=0

F(k) exp
(

ı2π
i k
N

)

so the transforms are not normalised, so for signal f (i) if you take forward followed by inverse,
the result will be N f (i).

School of Physics Java Support Revised: 22 May 2007

JAVA -17

Two-Dimensional Complex FFTs

There is a two method to take two dimensional FFT, being again for interleaved and split data
being

double[] twoDimensional(int width, int height, double data[],
int dirn, boolean overwrite)

for interleaved data where the parameters are:

• width the primary dimension of the two-dimensional data.

• height the secondary dimension of the two-dimensional data.

• data one-dimensional double[] array holding the complex data with real and complex
parts in adjacent elements. This array must be of length 2*width*height. For the two-
dimensional samples function f (i, j) the values must be located in

fR(i, j) = data[2∗ (j∗width+i)] and fI(i, j) = data[2∗ (j∗width+i)+1]

• dirn direction ±1 as in the one-dimensional case.

• overwrite boolean that determines if the FFT will overwrite the input data or will be
returned in a new double array without changing the input data array.

• returns a double[] array containing the FFT of the data, again of length 2*width*height
with the real and imaginary parts in adjacent elements, so a that

FR(k, l) = data[2∗ (l∗width+k)] and FI(k, l) = data[2∗ (l∗width+k)+1]

if overwrite is true this will be in the same array as the input data, so overwriting it,
while if false it will be in a newly allocated double[] array.

For split data format the call is

double[][] twoDimensional(int width, int height, double[][] data, int
dirn, boolean overwrite)

with parameters,

1. width and height giving width and height of array as above.

2. data a two-dimensional of size [2][width∗height]

fR(i, j) = data[0][j∗width+i)] and fI(i, j) = data[1][j∗width+i]

As the the one-dimensional case, there is no normalisation, so that forward then inverse trans-
form will result in data being scaled by width*height.

School of Physics Java Support Revised: 22 May 2007

JAVA -18

Three-Dimensional Complex FFTs

There is a single method to take two dimensional FFT, this being:

double[] threeDimensional(int width, int height, int depth, double data[],
int dirn, boolean overwrite)

where the parameters are:

• width the primary dimension of the three-dimensional data.

• height the secondary dimension of the three-dimensional data.

• depth the third dimension of the three-dimensional data.

• data one-dimensional double[] array holding the complex data with real and complex
parts in adjacent elements. This array must be of length 2*width*height*depth. For
the three-dimensional samples function f (i, j,k) the values must be located in

fR(i, j,k) = data[2∗ (k∗width∗height+j∗width+i)]

fI(i, j,k) = data[2∗ (k∗width∗height+j∗width+i)+1]

• dirn integer to specify the direction of transform, FFTW.FORWARD for forward transform,
FFTW.BACKWARD for inverse. These constants are just 1 and −1 respectively.

• overwrite boolean that determines if the FFT will overwrite the input data or will be
returned in a new double array without changing the input data array.

• returns a double[] array containing the FFT of the data, again of length 2*width*height*depth
with the real and imaginary parts in adjacent elements, so a that

FR(k, l,m) = data[2∗ (m∗width∗height+l∗width+k)]

FI(k, l,m) = data[2∗ (m∗width∗height+l∗width+k)+1]

if overwrite is true this will be in the same array as the input data, so overwriting it,
while if false it will be in a newly allocated double[] array.

As the the one-dimensional case, there is no normalisation, so that forward then inverse trans-
form will result in data being scaled by width*height*depth.

FFTWReal Class
The extending class take real FFT where the data is packed in one-dimensional double[]
arrays.

Constructors

There are four possible constructors, these being:

1. FFTWReal() default constructor that initialises the package with default settings and
loads the native interface library.

School of Physics Java Support Revised: 22 May 2007

JAVA -19

2. FFTWReal(boolean systemWisdom) as default constructor but also loads the system-
wide wisdom file, advanced section for details.

3. FFTWReal(File wisdomFile), as default constructor but also loads personal wisdom
file by File.

4. FFTWReal(String wisdomFile), as default constructor but also loads personal wisdom
file by file name.

Most users will either use default constructor, or will load system wide wisdom file, if it is
available.
Taking FFT of real-only data is much more complicated than for complex data since although
the real space data is real, the Fourier space data is complex with Hermition symmetry. Since
the Fourier transform is unitary then we should have the same amount of data in real and
Fourier space, however due to the packing scheme in FFTW the Fourier space representation
take slightly more space. This can be overcome in C by over-allocation of memory in real
space, but with JAVA strict array-bound checking, this is much more difficult. Therefore this
interface does not implement in-place real transforms but always returns a the transform results
in newly allocated memory. This is more expensive in memory allocation, but from initial
timing, does not appear to have a significant computational penalty9.

One-Dimensional Real FFT

There are two methods, one for forward transforms and one for inverse. The forward transform
is taken by

double[] oneDimensionalForward(double realArray[])

where the parameters are

• data one-dimensional double[] array holding the data one data point per element, so
for real signal f (i) then f (i) = data[i], where for N samples the length of the array
data.length = N.

• returns a one-dimensional array of containing N/2 + 1 complex components with real
and imaginary parts in adjacent elements.

FR(k) = return[2∗k] and FI(k) = return[2∗k+1]

for k = 0, . . . ,N/2, so for N even, there is an extra component than would be expected,
see below for explanation.
This returned array is in a different location that the data array which in unaffected by
the transform.

The inverse transform is taken by

double[] oneDimensionalBackward(double complexArray[])
9It is considerably faster to take real transforms than to consider real data as being complex with the imaginary

part being zero.

School of Physics Java Support Revised: 22 May 2007

JAVA -20

where the parameters are

• complexArray which is a one-dimensional double[] array consisting of N/2+1 com-
plex pairs with real and imaginary parts in adjacent elements holding the Hermition
Fourier transform data. The length of this array is thus N +2 elements.
See oneDimensionalForward for the exact format of this array. It is usual to use this
method to inverse transform data that was forward transformed by oneDimensionalForward,
if this is not the case, read and understand the symmetry properties of real Fourier trans-
forms very carefully before trying to use this.

• return the inverse Fourier transform in a double[] array of length N. This array is in a
different memory location than complexArray which in unaffected by this transform.

Again for efficiency there is no normalisation with respect to the sample lengths, so forward
followed by inverse will result in data of N f (i) where N is the number of samples.

Symmetry of One-Dimensional Real Fourier Transforms

We know that the Fourier transform of a real signal is Hermition symmetry, so for real f (i) then

FR(−k) = FR(k) and FI(−k) = −FI(k)

but the discrete Fourier transform as also cyclic of period N, the length of the transform, so we
have that,

FR(N − k) = FR(k) and FI(N − k) = −FI(k)
so to form data in the range 0, . . . ,N−1, then we need FR() and FI() to be in the range 0, . . . ,N/2
inclusive, so each having N/2 + 1 elements. This initially looks wrong, but if we also note
that F(0) and F(N/2) are real only10, then we see we have N/2 + 1 real values and N/2− 1
imaginary values that depend on f (i), so making N values with two stray zeros.
Clearly it is possible to relocate the FR(N/2) element to the FI(0) location, which is always
zero, so giving N/2 complex elements as expected, but this is somewhat unnatural since the
first complex element of the Fourier array is a rather odd mixed term. Given this issue, the
authors of FFTW have opted to return the Fourier transform of real signal of N samples as a
complex array of N/2 + 1 with two of the imaginary values always zero. This does however
mean that the real space and Fourier space take up different amount of array space, thus this
problems with with in-place transforms noted above.

Two-Dimensional Real FFT

As with the one-dimensional case, there were are two method, one for forward and one for
inverse transforms. The forward transform is,

double[] twoDimensionalForward(int width, int height,
double realArray[])

where the parameters are,
10since sin(0) = sin(π) = 0

School of Physics Java Support Revised: 22 May 2007

JAVA -21

• width primary dimension of the two-dimensional array.

• height secondary dimensional of the two-dimensional array.

• realArray one-dimensional double[] array of length width*height containing the
data with for sampled image f (i, j) located at

f (i, j) = realArray[j∗width+i]

with one sample per element.

• return is a double[] array containing complex samples in adjacent pairs with wft*height
samples where wft = width/2+1.

FR(k, l) = return[2∗ (l∗wft+k)] and FI(k, l) = return[2∗ (l∗wft+k)+1]

where k = 0, . . . ,width/2 inclusive and l = 0, . . . ,height−1.

The corresponding inverse transform is

double[] twoDimensionalBackward(int width, int height,
double complexArray[])

where the parameters are

• width primary dimension of the two-dimensional data in real space.

• height secondary dimensional of the two-dimensional data in real space.

• complexArray one-dimensional double[] array containing the Hermition complex trans-
form data as returned by twoDimensionalForward with wft*height complex samples
where wft = width/2+1.

• return a double[] array of size width*height being the two dimensional real space
function with one samples per element located at

f (i, j) = realArray[j∗width+i]

Again, for efficiency there is no build-in normalisation in either transform.

Symmetry of Two-Dimensional Fourier Transforms

Here we have Hermition symmetry in two-dimensions, so for a real f (i, j) of size M×N then
we have

FR(−k,−l) = FR(k, l)
FR(−k, l) = FR(k,−l)

FI(−k,−l) = −FI(k, l)
FI(−k, l) = −FI(k,−l)

School of Physics Java Support Revised: 22 May 2007

JAVA -22

but F(k, l) is now cyclic of period M in the k direction and N in the l directions, so we have that

FR(M− k,N − l) = FR(k, l)
FR(M− k, l) = FR(k,N − l)

FI(M− k,N − l) = −FI(k, l)
FI(M− k, l) = −FI(k,N − l)

so as for the one-dimensional case we only need half the Fourier data, with the other half given
by the symmetry conditions. The half returned by FFTW is

F(k, l) for k = 0, . . . ,M/2 and l = 0, . . . ,N −1

so for M being even, then a total of (M/2 + 1)N complex points. The reason for the apparent
extra points are exactly as explained for the one-dimensional case, where here F(0, l) and
F(M/2, l) are always real only, but are both returned with zero imaginary parts rather than the
packing the two real parts into one complex element. This makes unpacking, and processing
the Fourier data slightly! easier.

Three-Dimensional Real FFT

Following on the three-dimensional case, there were are two method, one for forward and one
for inverse transforms. The forward transform is,

double[] threeDimensionalForward(int width, int height,
depth, double realArray[])

where the parameters are,

• width primary dimension of the three-dimensional array.

• height secondary dimensional of the three-dimensional array.

• depth the third dimension of the three-dimensional array.

• realArray one-dimensional double[] array of length width*height*depth contain-
ing the data with for sampled image f (i, j,k) located at

f (i, j,k) = realArray[k∗width∗heightj∗width+i]

with one sample per element.

• return is a double[] array containing complex samples in adjacent pairs with wft*height*depth
samples where wft = width/2+1.

FR(k, l,m) = return[2∗ (m∗wft∗height+l∗wft+k)]

FI(k, l,m)) = return[2∗ (m∗wft∗height+l∗wft+k)+1]

where k = 0, . . . ,width/2 inclusive and l = 0, . . . ,height−1.

The corresponding inverse transform is

School of Physics Java Support Revised: 22 May 2007

JAVA -23

double[] threeDimensionalBackward(int width, int height,
int depth, double complexArray[])

where the parameters are

• width primary dimension of the three-dimensional data in real space.

• height secondary dimensional of the three-dimensional data in real space.

• depth third dimensional of the three-dimensional data in real space.

• complexArray one-dimensional double[] array containing the Hermition complex trans-
form data as returned by twoDimensionalForward with wft*height*depth complex
samples where wft = width/2+1.

• return a double[] array of size width*height being the two dimensional real space
function with one samples per element located at

f (i, j,k) = realArray[k∗width∗height+j∗width+i]

Again, for efficiency there is no build-in normalisation in either transform.

Wisdom Files and Information
FFTW wisdom is information on the optimal FFT calculation scheme to use on the particu-
lar computer for the particular size of FFT being performed. The optical calculation method
will depend on the details of the local computer, being processor type, memory size available,
memory bandwidth, disc speed, and even, on a multi-user system, what other jobs are run-
ning. For each system a system wide average wisdom is normally located in a text file being
/etc/fftw/wisdom11. This file contains information about all the standard sized one and two
dimensional FFTs. Similar special wisdom files can be generated anywhere and loaded. The
management methods are:

• able to load either system of special wisdom file with the constructor parameters.

• boolean loadWisdom() loads the current system wisdom file. Returns true is success-
ful.

• boolean loadWisdom(File file) loads a specified wisdom file by File. Returns
true is successful.

• boolean loadWisdom(String wisdom) Loads wisdom from a JAVA STRING. Returns
true is successful.

• void clearWisdom() removes all wisdom information and deallocated the memory
space it was using.

• boolean exportWisdom(File file) exports the current loaded wisdom information
to a File. Returns true is successful.

11Normally created by fftw-wisdom, an application supplied with FFTW

School of Physics Java Support Revised: 22 May 2007

JAVA -24

• String getWisdom() gets the current loaded wisdom as a String.

• static String readWisdom(File file) reads a wisdom file into a static String.

• static boolean writeWisdom(String wisdom, File file)write a String contain-
ing] wisdom information to a output File. Returns true is successful.

School of Physics Java Support Revised: 22 May 2007

JAVA -25

6 ArrayUtil class
The ArrayUtils class is a series of static methods to manipulate double[] arrays in the for-
mats used by jttfw. These utilities are used extensively within DataArray, but are also very
useful if you want to use the lower level FFTW class methods.

Interleave and split methods
These methods convert between interleaves array where complex data is held in adjacent el-
ements of a one-dimensional array, and split arrays where real and imaginary data is held in
separate arrays.

1. static double[] interleave(double[] real, double[] imag) takes two double[]
arrays containing real and imaginary parts and returns a new interleaved array with real
and imaginary values in adjacent elements. If imag is either null or of length 0, it is
treated as an array on zeros.

2. static double[] interleave(double[][] data) takes two-dimensional split array
with [0][i] holding the real value and [1][i] imaginary value of the ith element and
returns a new interleaved array of length 2*data[0].length.

3. static double[][] split(double[] data) split an interleaved double[] array into
two split array, returned as a double[2][] array with [0][i] holding the real values and
[1][i] imaginary.

4. static double[][] split(double[] real, double[] imag) forms a two-dimensional
split array from two array of real and imaginary parts. If imag is null or of length 0,
then it is assumed to be zero. Note the input arrays will not be copied to a new memory
space.

Getting and Setting Complex elements
The following static methods allows the various array formats to be accessed using the
Complex class. The available methods are:

1. static Complex getComplex(double[] data, int i) get the ith complex element
of an interleaves array where the real and imaginary parts are held in adjacent elements.

2. static void setComplex(double[] data, int i, Complex z) set the ith of an in-
terleaved array with specified Complex.

3. static Complex getComplex(double[] real, double[] imag, int i) get the ith

complex element from a split array with the real and imaginary parts held in two separate
arrays.

4. static void setComplex(double[] real, double[] imag, int i, Complex z)
set the ith of a split array with real and imaginary in two separate arrays with specified
Complex.

School of Physics Java Support Revised: 22 May 2007

JAVA -26

5. static Complex getComplex(double[][] split, int i) get the ith complex ele-
ment from a split array with the real and imaginary parts held in a two-dimensional split
array.

6. static void setComplex(double[][] split, int i, Complex z) set the ith of
a split array with real and imaginary in a two-dimensional split arrays with specified
Complex.

Whole Array Manipulations
There are a limited range of method to perform whole array manipulations all of which use
direct array access with minimum of setter/getter overhead.

1. static void conjugate(double[] data) forms complex conjugate of interleaved
array by negating imaginary parts.

2. static void conjugate(double[][] split) forms complex conjugate of split ar-
ray.

3. static void mult(double[] data, double a) multiplies interleaved array by a scalar.

4. static void mult(double[][] split, double a)multiplies a split array by a scalar.

5. static void mult(double[] data, double a, double b)multiplies an interleaved
array by a complex specified as two doubles.

6. static void mult(double[] data, Complex c) multiplies an interleaves array by
a Complex.

7. static void mult(double[][] split, double a, double b) multiplies a split ar-
ray by a complex specified as two doubles.

8. static void mult(double[][] split, Complex c)multiplies a split array by a Complex.

School of Physics Java Support Revised: 22 May 2007

	Introduction
	Use of Package
	Speed and Size

	Complex class
	Setters

	RealDataArray class
	Data Element Manipulation
	Array Data Manipulation

	ArrayUtil class

