

Topic 6: Digital Filtering

Aim These two lectures cover Digital Filtering which is the main tool of image processing. We will consider both *linear* and *non-linear* filters and their operation on images.

Contents:

- Linear Digital Filtering
- Fourier Space Filters
- Real Space Filters
- Use of Linear Filters
- Real Space Non-Linear Filters
- Homomorphic Filtering
- Summary

Linear Digital Filtering

Main image processing operation, used for 90% of image processing operations.

Objective is to *Convolve* image f(i, j), with filter function h(i, j). In Real Space,

 $g(i,j) = h(i,j) \odot f(i,j)$

or by the convolution theorem in Fourier Space

G(k,l) = H(k,l) F(k,l)

This operation can be performed in *Real* **OR** *Fourier* space. Mathematical operation is identical, but computational cost varies.

The operation of the filter is controlled by

 $egin{array}{rcl} h(i,j) &
ightarrow & {
m In \ real \ space} \ H(k,l) &
ightarrow & {
m In \ Fourier \ space} \end{array}$

Fourier Space Convolutions

Convolution can be written as,

 $g(i,j) = \mathcal{F}^{-1}\left\{H(k,l)F(k,l)\right\}$

Processing requires **TWO** DFTs and a complex multiply, (a third DFT required if H(k,l) is formed from h(i, j)).

Note: DFTs and \times must be performed in floating point format.

Computational time **independent** of filter type.

Time will depend on the computer system: for example 512×512 images, Pentium 4, computational time about 0.25 seconds.

Real Space Convolutions

For filter h(i, j) of size $M \times M$,

$$g(i,j) = \sum_{m,n=-M/2}^{M/2} h(m,n) f(i-m,j-n)$$

shift & multiply scheme.

Computation $\propto M^2$

All calculations can be integer or byte.

For serial machine filters bigger that 9×9 are typically faster by Fourier space technique.

Fourier Space Filters

Filtering operation determined by H(k, l), modified FT of image.

Most applications input & output images are **REAL**, so filter must preserve Symmetry conditions,

 $\begin{array}{rcl} \mbox{Real Part} & \Rightarrow & \mbox{Symmetric} \\ \mbox{Imaginary Part} & \Rightarrow & \mbox{Anti-symmetric} \\ \end{array}$

so H(k, l) must obey these conditions.

In practice H(k, l) is Real and Symmetric.

Low Pass Filter

Low pass filters allow *LOW* spatial frequencies to pass while attenuating or blocking *HIGH* spatial frequencies. Used extensively in the Reduction of Noise (see last lecture).

Ideal Low-Pass Filter

Block all frequencies greater than some limit,

$$\begin{array}{ll} H(k,l) &= 1 & k^2 + l^2 \leq w_0^2 \\ &= 0 & \text{else} \end{array}$$

This Fourier transforms to give

$$h(i,j) = \frac{J_1(r/w_0)}{r/w_0}$$

which results in "ringing" effects in the output image due to the lobes associated with h(x, y).

Not really useful.

Digital Example

 128×128 image with low-pass filter with $w_0 = 15$.

Input image

Low-pass filter

Real space filter

Filtered Image

Useful to reduce the effect of random noise, but too much "ringing" to be actually useful.

Gaussian Low Pass Filters

Filter profile in Fourier space is a two dimensional Gaussian of the type:

$$H(k,l) = \exp\left(-\frac{w}{w_0}\right)^2$$

where $w^2 = k^2 + l^2$ and w_0 is the 1/e point of the Gaussian.

H(u, v) is *infinite*attenuates but does not remove high spatial frequencies.

In real space h(i, j) is also Gaussian, begin, (see Fourier Booklet),

$$h(i,j) = \frac{\pi}{w_0^2} \exp\left(-\pi^2 w_0^2 r^2\right)$$

where $r^2 = i^2 + j^2$.

This gives a smooth filtered image without any ringing.

Digital Example

 128×128 image with lowpass filter with $w_0 = 15$.

Input image

Lowpass filter

Real space filter

Filtered Image

Very useful digital filter for noise reduction giving a very "smooth" filtered image.

Other Smooth Low-Pass Filters

Butterworth Filter:

$$H(k,l) = \frac{1}{1 + \left(\frac{w}{w_0}\right)^n}$$

where w_0 is *half point* and *n* is the *order*.

Plot with $w_0 = 15$ and n = 2, 4, 6.

Very similar properties to Gaussian, filter inherited from analogue signal processing.

Other Smooth Low-Pass Filters I

Trapezoidal filter:

 $\begin{array}{ll} H(k,l) &= 1 & w < w_0 \\ &= \frac{w - w_1}{w_0 - w_1} & w_0 \le w \le w_1 \\ &= 0 & w > w_1 \end{array}$

This will exhibit more ringing than Gaussian or Butterworth, but less than ideal filter.

Use the filtering program to "play" with these.

High Pass Filter

Pass HIGH spatial frequencies while attenuating or blocking LOW spatial frequencies.

Used for the enhancement of high frequencies (and thus edges)

Ideal High-Pass Filter

Block all frequencies less than some limit,

 $\begin{array}{ll} H(l,k) &= 0 & l^2 + k^2 \leq w_0^2 \\ &= 1 & \text{else} \end{array}$

This filter suffers from such sever ringing artifacts pass filters.

Output Image

Example with $w_0 = 25$.

Gaussian High Pass Filter

Smooth reduction of *Low* spatial frequencies while the high spatial frequencies are pass unaltered.

$$H(k,l) = 1 - \exp\left(-\frac{w}{w_0}\right)^2$$

again with $w^2 = k^2 + l^2$, which is a smooth filter in Fourier space.

This gives a smooth h(i, j) in real space, so enhances edges without introduction of ringing.

Output Image

Example with $w_0 = 25$.

Other Smooth High Pass Filters

We can modify the smooth low pass filters to give High Pass, for example:

Highpass Butterworth:

$$H(k,l) = 1 - \frac{1}{1 + \left(\frac{w}{w_0}\right)^n} = \frac{1}{1 + \left(\frac{w_0}{w}\right)^n}$$

where w_0 is *half point* and *n* is the *order*.

Plot with $w_0 = 25$ and n = 2, 4, 6. This give almost identical results to the highpass Gaussian.

Use the filtering program to "play" with these.

Real Space Filters

Filter is specified in real space by the mask h(i, j) of finite size, typically 3×3 , 5×5 or sometimes 7×7 .

The filter operation is then specified by the mask elements h(i, j).

- Mask elements are Real, usually integer.
- Able to use integer, or fixed point arithmetic.
- For masks bigger that $\approx 7 \times 7$, faster to use Fourier technique.

Real Space Averaging

Replace each pixel by the average of its neighbours, effect of *Low pass* filtering.

5 Pixel Average

 $\begin{array}{ccccc} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{array}$

gives a filter with an effective radius of 1 pixel.

9 Pixel Average

This in equivalent of multiplying with H(k, l) in Fourier space, (see tutorial for detail).

Effect or reducing high spatial frequencies, but not removing them, (actually removes a range of spatial frequencies).

Digital Example

Input Image

Fourier Transform

5 point ave

9 point ave

Fourier Transform

Real Space Differentiation

For a one-dimensional continuous function we have the definition of differentiation being:

$$\frac{df(x)}{dx} = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta}$$

Discrete case of $\delta = 1$,

$$\frac{\mathrm{d}f(i)}{\mathrm{d}i} = f(i+1) - f(i)$$

which if we consider convolution as Shift-Fold-Multiply-Add then differentiation can be written as:

$$\frac{\mathrm{d}f(i)}{\mathrm{d}i} = \begin{bmatrix} -1 & 1 \end{bmatrix} \odot f(i)$$

Real Space Differentiation I

Similarly with $\delta = 2$ we get

 $\frac{\mathrm{d}f(i)}{\mathrm{d}i} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \odot f(i)$

Either of these convolutions can be used to approximate the first order differential of a sampled function.

Second Order Differentials

Similarly the second order differential is given by,

$$\frac{d^2 f(i)}{di^2} = f(i+1) - 2f(i) + f(i-1)$$

which can be written as

$$\frac{\mathrm{d}^2 f(i)}{\mathrm{d}i^2} = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} \odot f(i)$$

Note also that

 $\begin{bmatrix} 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \end{bmatrix} \odot \begin{bmatrix} -1 & 1 \end{bmatrix}$

as would be expected since convolution is a linear operation.

Two-Dimensional Differentials

In Two Dimensions we have

$$\frac{\partial f(i,j)}{\partial i} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \odot f(i,j)$$

and similarly

 $\frac{\partial f(i,j)}{\partial j} = \begin{bmatrix} -1\\0\\1 \end{bmatrix} \odot f(i,j)$

However to reduce the effect of noise, it is conventional to average the differential over 3 rows/columns respectively to give,

$$\frac{\partial f(i,j)}{\partial i} = \begin{bmatrix} -1 & 0 & 1\\ -1 & 0 & 1\\ -1 & 0 & 1 \end{bmatrix} \odot f(i,j)$$

and

$$\frac{\partial f(i,j)}{\partial j} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \odot f(i,j)$$

which will enhance the vertical and horizontal edges respectively.

Two-Dimensional Differentials

x-differential

X-differential enhances vertical edges Y-differential enhances vertical edges.

y-differential

Fourier Space Differentials

From Fourier Transform Booklet, we have that

$$\mathcal{F}\left\{\frac{\partial f(x,y)}{\partial x}\right\} = \imath 2\pi u F(u,v) \text{ and } \mathcal{F}\left\{\frac{\partial f(x,y)}{\partial y}\right\} = \imath 2\pi v F(u,v)$$

so that differential is equivalent to Fourier space multiplication by $i2\pi u/v$.

This has the effect of enhancing high frequency at the expense of low frequencies, so is essentially a high-pass filter.

Other zeros result from the three-row/col averaging.

Second Order Differentials

For the second order differentials,

$$\frac{\partial^2 f(i,j)}{\partial i^2} = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} \odot f(i,j)$$

and

$$\frac{\partial^2 f(i,j)}{\partial j^2} = \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix} \odot f(i,j)$$

so that the Laplacian,

$$\nabla^2 f(i,j) = \frac{\partial^2 f(i,j)}{\partial i^2} + \frac{\partial^2 f(i,j)}{\partial j^2} = \begin{bmatrix} 0 & 1 & 0\\ 1 & -4 & 1\\ 0 & 1 & 0 \end{bmatrix} \odot f(i,j)$$

which forms the Laplacian of the 2-dimensional image.

Second Order Differentials I

While in Fourier space, we have from *Fourier Transform* booklet equation (17) we have that:

$$\mathcal{F}\left\{\nabla^2 f(x,y)\right\} = -(2\pi w)^2 F(u,v)$$

where $w^2 = u^2 + v^2$, giving

Enhances edges in all directions.

Edge Shapes

For a positive edge the shape of the differentials are:

Peak in the first differentail and zero crossing in the second. (see later)

Edge Shapes I

Form and edge enhancement by substraction of the laplacian

which can be implemented by

$$f(i,j) - \nabla^2 f(i,j) = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix} \odot f(i,j)$$

Edge Shapes II

Whis gives

Input image

Edge Enhanced

This is the most common edge sharpening filter.

Use of Linear Filters

- Low Pass Filters: are used to smooth images and reduce the effect of noise, in particular used to smooth image prior to edge detection.
- **High Pass Filter:** (also differentiations filters), have the effect of enhancing high frequencies and thus edges.

Filters can be combined to form *Bandpass* that attenuates both low & high spatial frequencies allowing middle frequencies to pass.

Due to linear nature, filters can be combined in Fourier space by \times **or** is real space by \odot operation.

Non-Linear Real Space Filters

The real space shift & multiply operation can be modified to

$$g(i,j) = O_{m,n \in w}[h(m,n)f(i-m,j-n)]$$

range of h(m,n) defined by w. Operation now defined by mask h(i,j) and operator O[]

In most non-linear filters we have

$$h(i,j) = 1 \quad i,j \in w$$

with the operation of the filter controlled by O[] and the size of w only.

Shrink & Expand Filters

Taking

O[] = Min[]

the operator will act as a *Shrink* operation with bright objects reduced in size by approximately the size of the filter.

Taking

O[] = Max[]

the operator will act as an *Expand* filter, with bright objects increasing in size by approximately the size of the filter.

Shrink & Expand Filters

There operators typically used as a *pair* on binary image to remove small, isolated regions.

Note: These filters NOT commutative, ie.

 $E[S[f(i,j)]] \neq S[E[f(i,j)]]$

Two-Dimensional Case

In two dimensions the *Min* and *Max* will selectively remove small **bright** objects.

Very useful in "cleaning-up" isolated points in a binary thresholded image

Input

Binary Threshold

Binary Shrink

Binary Expand

Can be used with Grey Scale image, but you tend to get funny results.

Threshold Average Filter

For "data-dropout" noise we have isolated "noise points" that differ from the neighbour pixels.

compares each pixel with average of neighbours and smoothes only if pixel deviates significantly For each point form

$$A = \sum_{m,n=-M/2}^{M/2} h(m,n) f(i-m,j-n)$$

for 3 by 3 filter

$$h(i,j) = \begin{bmatrix} k & k & k \\ k & 0 & k \\ k & k & k \end{bmatrix}$$

where $k = 1/(M^2 - 1) = 0.125$, then output is

$$\begin{array}{ll} g(i,j) &= A & |A-f(i,j)| > T \\ & f(i,j) & \text{else} \end{array}$$

Selectively removes points that differ from neighbours.

Random Bit Error Example

8 bit image and we corrupt 1:50 bits. Large corruption when *most significant bit* is corrupted.

For 128×128 pixel image expect about 325 seriously corrupted pixels.

Apply Average Threshold Filter and count number of changed pixels.

Shows rapid rise at about 60.

Random Bit Error Example

Threshold will depend of the im, age, but $\approx 0.25 f_{\text{max}}$ is typical.

Median Filter

The Median filter is formed by setting

O[] = Median[]

where the median is defined as the *middle* value. Eg. for the 5 values

f(i) = 61, 10, 9, 11, 9

then

Median[f(i)] = 10

Note: is effectively ignores the out-of-place large value, so removes noise points.

In one-dimensions the median filter removes all features of less than M/2+1 in size but preserves all other features.

Similar to Shrink/Expand, but is also valid for Grey Level images.

Edge Preserving Properties

The *most* useful feature of the Median filter is its property at edges:

Median Filter of Images

In Two-dimensions it removes all feature of size $< M^2/2 - 1$ while retaining all other features, and retaining edges.

 3×3 Median

Very useful noise reduction filter used throughout image processing.

Filter effectively smoothes the image into regions of constant intensity but retains edges.

So acts as a selective Low-Pass filter.

Implementation of Median Filter

To calculate Median over each window the data must be (partly) sorted.

Computationally expensive, and typically 5×5 Median filter about the same computational time as DFT.

Aside: Medians of large arrays are very slow to calculated by "thick" (SelectSort) way. For fast technique, see Numerical Recipes in <language> section 8.5

One of the most useful real space filters available.

Homomorphic Filtering

For the case of a multiplicative process in Real space,

f(x,y) = i(x,y) r(x,y)

where

i(x,y) = Illumination r(x,y) = Reflectance

Homomorphic Filtering I

Form ln[] to separate terms go give,

 $z(x,y) = \ln\left(i(x,y)\right) + \ln\left(r(x,y)\right)$

Fourier transform this to give,

 $Z(u,v) = \mathcal{F} \left\{ \ln(i(x,y)) \right\} + \mathcal{F} \left\{ \ln(r(x,y)) \right\}$

known as the Cepstrum of f(x, y). Consider the frequency characteristics of each term:

i(x,y)smooth $\Rightarrow \ln(i(x,y))$ smooth r(x,y)rough $\Rightarrow \ln(r(x,y))$ rough

Filter Z(u, v) to get

$$Y(u,v) = Z(u,v)H(u,v)$$

where

High pass \Rightarrow Reduces i(x, y)Low pass \Rightarrow Reduces r(x, y)

then reform "filtered" image by,

$$g(x,y) = \exp[\mathcal{F}^{-1}\{Y(u,v)\}]$$

Typically used to correct for illumination effect.

Homomorphic Example

Input Image

Log of Input

Filter

Output

Low frequency variation in illumination has been (partially) removed.

See Gonzalez & Woods for better example

Summary

In this section we have covered:

- 1. Linear filtering in both real and Fourier space.
- 2. Examples low and high pass Fourier filters and their basic properties.
- 3. Example in real space linear filters for image smoothing and formation of differentials.
- 4. Method of combining linear filters in both real and Fourier space.
- 5. Real space non-linear filters.
- 6. Shrink and expand filters for image segmentation.
- 7. Average threshold filters for data drop-out noise removal.
- 8. Median filters and its edge preserving properties.
- 9. Homomorphic filtering for correction of illumination variation.

This ths the main image processing technique.

