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Topic 7: Digital Reconstruction

7.1 Introduction

In image reconstruction the aim is to remove or compensate for the imaging system aberrations
and try and reform theideal image being the image that would have been detected if the system
was perfect. The simplest cases is where the imaging system is linear andspace invariantso
that the aberrations can be characterised by itsPoint Spread Function. This is just the image
of a pointso typically can be directly measured or deuces form the system design, and thus
known or at least a good approximation is known. These assumptions valid for a large range of
practical systems

If we can assume this, then we have a linear convolution modelfor image formation where the
detected, digital imageg(i, j) is

g(i, j) = f (i, j)⊙h(i, j)+n(i, j)

whereh(i, j) is the point spread function,f (i, j) the ideal image andn(i, j) the, assumed,
additive noise, which is most cases we will assume is Gaussian zero meaned noise which is
uncorrelated with the image1. In all practical reconstruction system we require to know,or
have a good guess forh(i, j) to get a good reconstruction. The general problem is that we
detectg(i, j) and wish to recoverf (i, j).

Input image Linear Blur PSF Blurred Image

OTFH(k, l) FT Blurred Image

Figure 1: Example of a simulated linear blue of 9 pixels in both real and Fourier space.

The example of a linear blur is shown in figure 1 where the pointspread function become a
horizontal line of 9 pixels. This is the point spread function that would result from a horizon-
tal translation of the camera during the exposure, and results in the image being horizontally

1Other noise models are possible, but vastly complicate the reconstruction process.
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smudged. Here theH(k, l) the optical transfer function has a characteristic sinc() profile in the
horizontal direction, which is also seen in the Fourier transform of the blurred image.

Input image Defocus PSF Defocused Image
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Figure 2: Example of simulated defocus in both real and Fourier space.

The effect of the more common, and more complex, aberration of defocus is shown in figure 2
where for this extent of defocus the point spread function has a dark rather than bright centre.
The optical transfer function, shown as a plot along thek axis shown a severe low-pass filtering
effect with multiple zeros andnegativeregions where the contrast at that spatial frequency has
been reversed. This results in a severely blurred image where most of the high frequency infor-
mation appear to have beenlost. However as we will see in this section, that even with a severe
blur like this, provided we know the point spread function, reconstruction is still possible.

7.2 Inverse Filtering

The simplest scheme to recoveringf (i, j) having detectedg(i, j), is simple inverse filtering.
Due the the convolution relation in real space, in Fourier space we have that

G(k, l) = F(k, l) H(k, l)+N(k, l)

where,since we knowh(i, j) we know, or can calculateH(k, l), therefore the simplest estimate
for Fourier transform of the ideal image is given by

F̃(k, l) =
G(k, l)
H(k, l)

= F(k, l)+
N(k, l)
H(k, l)

where, clearly ifN(k, l) = 0, then we have a exact solution, so problem solved, since we can
simply inverse transform to getf (i, j) the idea image.
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This scheme has a major problem since even for tiny amounts ofnoise,n(i, j) being Gaussian
random noise, then

〈|N(k, l)|2〉 ≈ constant

at all spatial frequencies, which as shown in figure 3, even for an ideal imaging system,
H(k, l) → 0 at high spatial frequencies. So the term will dominate at high frequencies and
corrupt the reconstruction.
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Figure 3: Plot of the Optical Transfer Function of an ideal imaging system.

In practice the situation is worse than this, since all system where reconstruction is needed,
H(k, l) will have multiple zeros and negative regions as shown in figure 4. It is thenegative
regions that result in the severe blurring evident in figure 2since this corresponds to these
spatial frequencies having their contrast reversed.
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Figure 4: Plot of the optical transfer function associated with defocus showing multiple zeros
and negative regions.

The simplest solution to this problem is to modify the inverse filter to to ignore the regions
whereH(k, l) is small and the noise therefore dominates by taking,

F̃(i, j) =
G(i, j)
H(i, j)

for |H(i, j)|2 > T

= 0 for |H(i, j)|2 < T

where the thresholdT is chosen so thanT ≈ |N(i, j)|2. We can then form the reconstruction
f̃ (i, j) by inverse Fourier transform. The reconstruction of the simulated linear blur shown

School of Physics DIA(U01358) and TOIP(P00809) Revised: 30 July 2006



D R Session: 2006-2007 -4

in figure 1 is shown in figure 5. The reconstruction is reasonable, but the sharp threshold in
Fourier space results in regions of zero inF̃(i, j) shown in figure 5 (d) which give rise toringing
in reconstructionf̃ (i, j) shown in figure 5 (c). This threshold inverse filter can be optimised by
careful choice of threshold, but will always still suffer from some ringing which severely limits
its use.

(a) Blurred Image (b) Fourier Transform

(c) Reconstruction (d) Fourier Transform

Figure 5: Threshold inverse filter of the simulated linear blur showing significant ringing.

7.3 Wiener or Optimal Filter

The Wiener filter aim to solve the main problem of control of noise highlighted above by
forming a reconstruction that is aleast squaresestimatef̃ (i, j), of the ideal imagef (i, j), so
that,

〈

| f̃ (i, j)− f (i, j)|2
〉

Minimum

which can betunedfor different noise levels, and should therefore be applicable for a large
range of known point spread functions. To implement this, define an optimal filtery(i, j) such
that the least square reconstruction is given by

f̃ (i, j) = g(i, j)⊙y(i, j)

We also have that the defected image is given by

g(i, j) = f (i, j)⊙h(i, j)+n(i, j)

The aim is now to findy(i, j), such that the difference between the reconstruction and the ideal
image is minimised.
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We need to consider this problem in Fourier space where we have that,

G(k, l) = F(k, l)H(k, l)+N(k, l)

therefore by substitution, we have that the in Fourier spacethe reconstruction is

F̃(k, l) = G(k, l)Y(k, l) = F(k, l)H(k, l)Y(k, l)+Y(k, l)N(k, l)

Since we know that the Fourier transform is unitary, then there is thesameinformation inReal
andFourier space; therefore if two solutions are close together in realspace, they will also be
close in Fourier space, we can therefore perform the minimisation in Fourier space to give,

〈

|F̃(k, l)−F(k, l)|2
〉

Minimum

whereY(k, l) is the minimisation variable. We know that the minimum2 will occur when the
differential with respect to the minimisation variable is zero, so we therefore have that

∂
∂Y

〈

|F̃ −F|2
〉

= 0

which substituting forF̃ gives that

∂
∂Y

〈

|F −Y H F−Y N|2
〉

= 0

We can now expand the square, and noting that the noise is independent and zero meaned so
that〈N〉 = 0, we get that

∂
∂Y

〈

Y Y∗|W|2−Y∗H∗−YH+1
〉

= 0

where we have that

|W|2 = |H|2+
|N|2

|F|2

We note thatY is complex, so we explicitly write|Y|2 = Y Y∗. Now by differentiation, byY we
then get that,

∂Y∗

∂Y

〈∣

∣Y|W|2−H∗
∣

∣

〉

+
∂Y
∂Y

〈∣

∣Y∗|W|2−H
∣

∣

〉

= 0

We note that this is of the form
a+a∗ = 0

so thatbothpartsmustto zero. Now ifY(k, l) 6= Constant3, then we must have that

∂Y∗

∂Y
6= 0 and

∂Y
∂Y

6= 0

which gives a solution forY(k, l) the optimal filter that minimised the distance betweenF(k, l)
andF̃(k, l) is given by

Y(k, l) =
H∗(k, l)
|W(k, l)|2

which, substituting back for|W(k, l)|2 can be written as:

Y(k, l) =
H∗(k, l)

|H(k, l)|2+
|N(k, l)|2

|F(k, l)|2

where||2 are thePower Spectrum. This gives us thefull solution to the minimisation, but to
actually apply it we need take some assumptions and estimates.

2or maximum
3the trivial solution
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7.3.1 Estimates for the Wiener Filter

The expression for the optimal filter is in terms ofH(k, l) the optical transfer function of the
system,|N(k, l)|2 the power spectrum of Noise, and also|F(k, l)|2 which is the power spectrum
of the ideal reconstructed image. In any practical reconstruction system we either know, or can
measure thePoint Spread Function: h(i, j) so we can calculate theoptical transfer function
H(k, l). We are assuming Gaussian Additive noisen(i, j), which gives us that|N(k, l)|2 ≈
Constant, then from Parceval’s theorem give us that

|N(k, l)|2 = σ2
n Variance of Noise

The problem term is|F(k, l)|2 the power spectrum ofideal image which clearly we do not
know, so have to make approximations. There are a range of possible approximation, these
being

1. Smoothed version of|G(k, l)|2, so the power spectrum of the detected image. This is
valid provided thatH(k, l) has no zeros, however in most practical cases, such as defocus
or linear blur,H(k, l) doeshave multiple zeros, so this scheme does not work.

2. Approximate|F(k, l)|2 by Negative Exponential. This assumes that the image is frac-
tal consisting of a series of repeating shape at ever decreasing scale. This is a reasonable
model for many natural scenes such as aerial photographs butnumerically there are prob-
lems close to(0,0)).

3. Approximate|F(k, l)|2 by a Gaussian which is the mathematically easy solution that
corresponds to atypicalpower spectrum with most power at low frequencies.

4. Take|F(k, l)|2 ≈ constant, which initially look a very poor model since it actually as-
sumes that the image is uncorrelated random noise.

In practice quality of reconstruction only weakly dependent on function form taken for|F(k, l)|2

and in most cases the apparently crudest of it beingconstantgives the best results. Given this
the Wiener Filter is frequently written as

Y(u,v) =
H∗(k, l)

|H(k, l)|2+ 1
SNR2

where SNR is chosen to give the best visual reconstruction.

The result of applying this filter to the linear blur shown in figure 1 and defocus shown in
figure 2 is shown in figure 6 using SNR= 1000 which is equivalent tono noise. This shown
essentially perfect reconstructions and their associatedFourier transforms shown none of the
sharp discontinuities evident in the thresholded inverse filter. In the Fourier plane of the defocus
reconstruction there is some evidence of low-pass filteringdue toH(k, l) being very small at
high spatial frequencies, but it still gives an excellent reconstruction.

7.3.2 Effect of SNR on Reconstruction

The exact effect of the SNR term in the Wiener filter construction will depend on the shape
H(k, l) of the system. but we can gain insight by considering the specific and typical case of
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Linear Blur Fourier Transform

Defocus Image Fourier Transform

Figure 6: Low noise Wiener filter reconstructions of linear blur and defocus.

defocus of a square4 lens. This is shown in detail in figure 7, where the the OTF,H(u) is shown
in 7 (a) being the same transfer function used in the previousdefocus examples with severe
attenuation of high spatial frequencies, multiple zeros and regions of contrast reversal. The
shape ofY(u) the Wiener filter is plotted in 7 (b) to (d) for SNR in range 1→ 256. At low SNR
is filter correct the regions of negative contrast, so will correct the worst aspects of the blurring,
but does little to enhance the high spatial frequencies, while at high SNR is the high spatial
frequencies as also enhanced. This is as expected, since at low SNR the image will be severely
corrupted with noise which has most effect at high spatial frequencies, so enhancement of these
high frequencies will simply enhance the noise. Similarly at high SNR there is little noise so it
is safeto enhance the high spatial frequencies.

We can consider the overall effect ofblur plus reconstructionsince in Fourier space, ignoring
noise, the reconstruction is is given by

F̃(k, l) = Y(k, l)G(k, l) = (Y(k, l)H(k, l)) F(k, l)

so the overall effect of of blurring the image and then reconstruction with the Wiener filter is
given by byY(k, l)H(k, l), which can be plotted for a range of SNRs as is shown in figure 8.
This shown, in figure 8 (a) that at low SNR the combination actslike a low pass filter which
severely attenuates the high spatial frequencies, so will significantly blur the image edges. As
the SNR rises the low pass effect reduces, so that in figure 8 (c) the effect of the blur and
reconstruction is almost flat except for the regions whereH(u) → 0 where the information is
totally lost in the initial blur, and is therefore also lost in the reconstruction. These graphs show
that the Wiener filter iswell behavedat all SNR introducing alow passeffect when the images

4The results for a more conventional circular lens are almostidentical butH(k, l) is a much more complex
expression.

School of Physics DIA(U01358) and TOIP(P00809) Revised: 30 July 2006



D R Session: 2006-2007 -8

-0.2

0

0.2

0.4

0.6

0.8

1

-10 -8 -6 -4 -2 0 2 4 6 8 10

H(u)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 -8 -6 -4 -2 0 2 4 6 8 10

Y(u,1.0)
Y(u,2.0)
Y(u,4.0)

(a)H(u) Defocus (b)Y(u) SNR= 1→ 4

-20

-15

-10

-5

0

5

10

15

20

-10 -8 -6 -4 -2 0 2 4 6 8 10

Y(u,8.0)
Y(u,16.0)
Y(u,32.0)

-150

-100

-50

0

50

100

150

-10 -8 -6 -4 -2 0 2 4 6 8 10

Y(u,64.0)
Y(u,128.0)
Y(u,256.0)

(c) Y(u) SNR= 8→ 32 (d)Y(u) SNR= 64→ 256

Figure 7: Shape of Wiener filter for defocus at various SNR,

is noisy to prevent amplification of noise in the reconstruction, while at high SNR enhances all
available information back to as close as possible to the original, ideal image.

7.3.3 Modified Wiener Filter

We have seen above that for low(ish) SNR the Wiener Filter acts as a low pass filter that will
tend to blur edges, so we can consider trying to add an additional constraint the the minimisation
to counteract this effect. For and imagef (x,y), we have,

∂ f (x,y)
∂x

= F −1{uF(u,v)} and
∂ f (x,y)

∂y
= F −1{vF(u,v)}

so that
|∇ f (x,y)| = F −1{wF(u,v)} where w =

√

u2+v2

where we have already seen that|∇ f (x,y)| is a high-pass version of the image, so enhancing
the edged.

So to enhance edges, while removing the blur we can modify minimisation in Fourier space to

〈|F̃(u,v)−F(u,v)|2〉+λ〈|wF̃|〉

This “can be shown” give,

Y(u,v) =
H∗

|W|2





1

1−λw2

w2
0





School of Physics DIA(U01358) and TOIP(P00809) Revised: 30 July 2006



D R Session: 2006-2007 -9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -8 -6 -4 -2 0 2 4 6 8 10

H(u)*Y(u,1.0)
H(u)*Y(u,2.0)
H(u)*Y(u,4.0)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -8 -6 -4 -2 0 2 4 6 8 10

H(u)*Y(u,8.0)
H(u)*Y(u,16.0)
H(u)*Y(u,32.0)

(a) H(u)Y(u) SNR= 1→ 4 (b)H(u)Y(u) SNR= 8→ 32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -8 -6 -4 -2 0 2 4 6 8 10

H(u)*Y(u,64.0)
H(u)*Y(u,128.0)
H(u)*Y(u,256.0)

(c) H(u)Y(u) SNR= 64→ 356

Figure 8: Overall effect of blur and reconstruction at a range of SNR

wherew0 is the band-limit of the reconstruction system, andλ is range±1. We therefore have,

λ = 0 Unconstrained Wiener

> 0 Edges enhanced Wiener

< 0 Edges reduced Wiener

In practical cases the effect of varyingλ will depend in the form ofH(u,v) and the SNR. This
modification gives a useful extra parameter to optimise but if used to excessively enhance edges
when SNR is low results in significant enhancement in the noise.

7.4 TheCLEAN Algorithm

The inverse and wiener filters are both linear Fourier space filters which assume the degraded
image contains all the information about the ideal image butit has beenscrambledby a known
point-spread function. If however the degraded image is as aresult of areas of the Fourier
space missing, such as found in tomography or radio astronomy, then the linear filters will not
produce any sensible reconstruction and we have to consideralternative schemes.

A typical scenario is shown in figure 9 which shown an ideal star image in figure 9 (a) and its
Fourier transform in 9 (b). If the data is collected in Fourier space5 over a limited region, in this
case half the Fourier plane in abow-tiepattern as shown in 9 (c), then the collected image is as
shown in 9 (d) showing considerable artifacts including thestars being elongated and spurious
ringing effects.

The simplest scheme to deal with this type of reconstructionis the CLEAN algorithm originally
designed to deal with radio astronomy data. We can assume theimage consists of a collection

5See next section on tomography.
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(a) Star Image (b) Fourier Transform

(c) Collect FT space (d) Collected Image

Figure 9: Result of simulation where large sections of the Fourier plane are removed showing
a degraded image.

of isolatedstarsconvolved with a point spread function as shown in figure 10. The aim of the
CLEAN is searches for point spread functions in real space input image andreplacesthem by
stars, or δ−functions in the output image.

=0

PSF

Stars field Detected Image

Figure 10: Model behind the CLEAN algorithm.

Assume that PSF is sharply peaked in the centre, then the CLEAN scheme is simply imple-
mented by, then scheme is:

1. Locate Maximum value in image.

2. Record location and height of PSF.

3. Subtract scaled PSF from image at that location.

4. If any peaks left, go to (1)
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Looks very simple, but does it work provided the imaging system matchesthe underlying
model.

To get this to actually work well, we need to add a variable scaling parameter when subtracting
the point-spread function, you typically remove 80% of the maximum peak found, and you
also need care in when to stop stop searching for more peaks, typically when the peaks left are
comparable with the variance of the noise. Reconstruction of the degraded image from figure 9
is shown in figure 11 with the point-spread function shown in 11 (b) and the reconstruction
in 11 (c) which consists of a set ofδ−functions. Examining the Fourier transform of the
reconstruction in 11 (c) shown that data has beeninterpolatedinto the two blank regions in the
Fourier transform of the collected data shown in 9 (c), that that we get a consistent image which
differs significantly from the linear filtering processes such as the Wiener filter which would
have left these regions blank. The final reconstruction is usually smoothed by convolution with
a Gaussian to give the reconstruction in 11 (e) which smoothsout the isolated spikes making
the image easier to understand.

(a) Collected Image (b) PSF (stretched) (c) Reconstruction

(d) FT of Reconstruction (e) Gaussian Low-pass

Figure 11: Example of reconstruction using the CLEAN algorithm.

7.5 Maximum Entropy

One of the most powerful reconstruction schemes is to maximise theentropyof reconstruction
subject to certain constraints, usually that it closely matches the ideal detected image. This
has the effect of producing thesmoothestimage consistent with the observed data. To see this
consider the definition of entropy being, of a two dimensional image as begin

H f = −〈p(i, j) logp(i, j)〉
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where

p(i, j) =
f (i, j)

N2〈 f (i, j)〉

which can be considered as aprobabilitysince it is normalsied with

N

∑
i=1

N

∑
j=1

p(i, j) = 1

Let us initially maximiseH f simply subject to the constraint that the summation over theimage
is constant6. Consider two pixels locations atk, l andm,m with p(k, l) & p(m,n) as shown in
figure 12. If we move an amount∆ from one to the other, so that

p(k, l) → p(k, l)−∆
p(m,n) → p(m,n)+∆

then provided that∆ is small, we can find the effect ofH f as can shown to be

H ′
f = H f +∆ log

(

p(k, l)
p(m,n)

)

so that
H ′

f > H f iff p(k, l) > p(m,n)

So byreducingpeaks andincreasingtroughs the maximiseH f . If this processes is continued,
then the global maximum must be where there are nopeaksor troughs, so when

p(i, j) = constant=
1

N2

which corresponds to thesmoothest possible imagegiven the simple constraint. This simple
example illustrated that maximisingentropyhas the effect of smoothing the image.

p(k,l)

p(m,n)

∆

Figure 12: Maximise the entropy subject to the pixel summation being constant.

7.5.1 More Practical Entropy

A more flexible and practical scheme uses an alternative definition of entropyof an image
f (i, j) being,

H f = −〈 f (i, j) [ log( f (i, j)/A)−1 ]〉

whereA is theaveragebrightness background intensity of the image. This definition has similar
mathematical properties to the conventional statistical physics definition ofentropybut withtwo
important differences differences.

6We will consider more realistic constraints shortly.
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1. Normalisation constraint removed, which now is typically incorporated in constraints on
reconstruction.

2. Free parameterA to characterise image.

This alternative definition is more applicable to real systems.

7.5.2 Max Entropy Deconvolution

The most common use of themaximum entropyis as a constrain in deconvolution of a point-
spread function in the presence of noise with the aim of producing thesmoothestimage con-
sistent with the observed data. In addition the log() in the expression also has the additional
useful property of forcing the reconstruction to be positive7.

The usual image model is just

g(i, j) = h(i, j)⊙ f (i, j)+n(i, j)

If the reconstruction is given bỹf (i, j), then theideal detected image, without the effect of
noise, must be given by,

g̃(i, j) = h(i, j)⊙ f̃ (i, j)

so for f̃ (i, j) to be a valid reconstruction, ˜g(i, j) must closely approximateg(i, j). One possible
measure is the least squares difference being

E =

〈

|g̃(i, j)−g(i, j)|2

σ2
n

〉

whereσ2
n is variance of the noise, so the more noise we expect in the system the more the

variation that is allowed. So to get themaximum entropyreconstruction subject to it being a
valid reconstructionwe can found by maximisation of

Q( f̃ ) = H( f̃ )−λE( f̃ )

whereλ is a constant used to control the reconstruction.

This relation does not have a analytical solution butcan be shownto be solvable digitally by
steepest decent to give iterative scheme of

f̃ k+1 = f̃ k +Aexp

[

−
2λ
σ2

n
h⊙ (g̃k−g)

]

where we have that
g̃k = h⊙ f̃ k

This scheme requireh(i, j) the point-spread function,σ2
n, the variance of the noise,A the image

background, andf 0 the starting image condition, to be known typically where wetypically
take asf 0 = A a constant as the starting condition. A typical example is shown in figure 13
where the car number plate is severely blurred in the original image are clearly readable in the
reconstruction.

7This is often a problem in linear filters, such as the Wiener filter, where ringing can result in negative regions
in the reconstruction.
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Figure 13: Example of maximum entropy deconvolution from from Skilling et al. Cambridge.

Maximum entropy is a computationally very heavy algorithm with two convolutions per itera-
tion, and typically many hundreds of iterations to form a reconstruction. This scheme is also
difficult to make numerically stable, and in practice theA value andλ in the definition ofen-
tropy have to be carefully controlled and modified throughout the iterations to give a sensible
solution. On more significance is that in practice this algorithm will converged to agoodand
plausible solution even ifh(i, j) is NOT well known making it the ideal choice for reconstruc-
tion when the details of the imaging system are not preciselyknown.

7.6 Geometric Image Correction

Many imaging system suffer from geometric distortion. Thiscan be as a result of aberrations
in the imaging system, for example with ultra-wide angle lenses straight lines are images as
curves, or as a result of the geometry of the imaging systems,for example a satellite image
of the curved Earth. In all such cases the system now has aspace variantPSF with differ-
ent imaging characteristics is different part of the image,so these is no deconvolution based
reconstruction scheme and other methods have to be found.

g(i,j) f(i,j)

Detected Reconstructed

(r,s) (i,j)

Figure 14: Re-sampling of a geometric distorted image.

Consider problem astwo-dimensional curve fittingonto a non-linear sampling grid. If the
detected image isg(i, j) then we define twodistortion functions r(i, j) & s(i, j), such that, as
shown in figure 14, theideal image is

f (i, j) = g(r,s)
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This formulates the problem as re-samplingg(i, j) on a grid defined byr(i, j),s(i, j)

Before considering how to calculate the re-sampling functions r(i, j),s(i, j), consider their
functional form. If the geometric distortion is onlytranslationthen we simply have

r = i +a0 and s= j +b0

which for the more general case oftranslation, scale& Rotation, we need six parameters
giving,

r = a0+a1i +a2 j and s= b0 +b1i +b2 j

which will give the type of linear warp as shown in figure 15.

Grid Image Linear Warp

Figure 15: Example of a linear warp characterised by six parameters.

A simplest example of a linear warp is an image rotation wherefrom a rotation ofθ the param-
eters are

a1 = cosθ b1 = −sinθ
a2 = sinθ b2 = cosθ

which is shown in figure 16 applied to thetoucan image forθ = 30◦.

Figure 16: Rotated version of the toucan withθ = 30◦.

The next level of geometric correction to correct to geometric distortions ofskewinghave 12
parameters giving expression forr(i, j),s(i, j) given by,

r = a0+a1i +a2 j +a3i2+a4 j2 +a5i j

s = b0+b1i +b2 j +b3i2+b4 j2 +b5i j

which give non-linear warping as shown in figure 17. This is also scheme used in computer
graphics to wrap and image round a three-dimensional object. It is also possible to go to higher
order and to include cubic terms which results in 20 parameters. This is not commonly used
since in most practical cases good results can be obtained with the simpler 12 parameter model.
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Figure 17: Grid and toucan image after warping with twelve parameter non-linear geometric
correction functions.

7.6.1 Calculation of Geometric Distortion Parameters

In some cases, where the optical imaging system is well known, it is possible to calculate
parameters directly from the system design. This was possible in old video cameras where the
detection tube had a curved front, or for a satellite is in an known orbit with respect to the Earth,
for example a geostationary weather satellite forming an image of the whole Earth disc and we
want to form a geometrically correct image of UK.

In most cases we do not know the distortions analytically andthey have to be found from the
distorted image. To do this we assume we can locateM knownfeatures with locations

(rk,sk) k = 1, . . . ,M

while we assume that theirtrue locations are at,

(ik, jk) k = 1, . . . ,M

as shown in figure18. So if the warping parameters are correctthen we have that

r(ik, ik) = rk s(ik, jk) = sk

which is a set of coupled non-linear equations which can be used to calculate theai andbi .

0 0 0 0

1 1 1 1
2 2 2 2

3 3 3 3

r  ,s i   ,j

r  ,s i   ,j
r  ,s i   ,j

i   ,jr  ,s

Figure 18: Location of known features are their true locations is a geometrically distorted
image.

In practice it is better to measuremany pointson the image and estimate parameters by min-
imisation of the least square errors given by

e2
a =

M

∑
k=1

( rk− r(ik, jk) )2 and e2
b =

M

∑
k=1

( sk−s(ik, jk) )2
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Clearly for a 12 parameters kit aminimumof 12 points are needed but usually take more than
100 points spread over theimportant regions of the image. This techniques is widely used
in satellite data and preparation of images for automatic map making with either manual or
automated location of the control points.

7.7 Re-sampling Procedure

To implement geometric correction we require to be able to form

f (i, j) = g(r(i, j),s(i, j))

where, in generalr(i, j) ands(i, j) will not be integers so will not fall on grid points, so must
interpolate between grid points from a continuous approximation of the detected image. We
know, from previous that the continuous approximation given by

g(x,y) = h(x,y)⊙g(i, j)

whereh(x,y) is the interpolation function. In most practical systems eitherzeroor first order
interpolation, being either the value of the closest pixel or the weighted of the four nearest
neighbours. This can result is some aliasing which can be evident in the Fourier transform
of the geometric corrected. The Fourier transform of the rotated image in figure 16 is shown
in figure 19. The rotation usedzeroorder interpolation in real space which results in a stray
horizontal bright band and some evidence of a vertical band thought the centre of the Fourier
transform.

Figure 19: Fourier transform of the rotated toucan image shown re-sampling error only the
horizontal.

In addition in many practical cases values ofr(i, j) & s(i, j) may be outside the known range
of the detected image data, so for aN×N image may be outside the range 0→ N−1. There
are two possible solutions to this, being

1. Cyclic Wrap roundwhere we assume the

g(N+ i,N+ j) = g(i, j)

althoughcorrect from a sampling viewpoint, frequent odd results obtained asshown in
figure 20 where the toucan image is repeated in two dimensions.
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2. Zero Padwhere we assume that

g(r,s) = 0 r or soutside image

which will give spurious boarder ofzero round parts of image, has to be allowed for,
especially if then processed by edge detectors.

So either solution is ideal, they both have different errors.

Figure 20: Effect of cyclic wrap round in two dimensions

7.8 Summary

In this long section we have covered

1. Inverse Filtering

2. Optimal or Wiener Filter

3. CLEAN reconstruction.

4. Maximum Entropy Reconstruction

5. Geometric Image Correction
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Workshop Questions

7.1 Shape ofH(k, l) for linear blur

For a 256 by 256 image convolved with a linear blur with a length of M pixels, calculate the
analytical expression forH(k, l). Sketch this function and discuss how the first zero is located
to the length of the linear blur.

7.2 Wiener Filter Simulation

Try thewiener filter simulation programme to experiment with the effect ofnoise levels and
SNR parameter in the Wiener Filter.

The program is based on linear horizontal blur PSF and operates as follows:

1. Initially asked for an input “ideal” image. Thetoucan.pgm is a good start.

2. Asks for size of horizontal blur in pixels. Blur function is a horizontal line of the specified
length, 1 pixel wide. (Try 10 to 20 pixels).

3. Optionally adds Gaussian signal dependent noise to give aspecified SNR. The added
noise has standard deviation,

σn =
σ f

SNR
whereσ f is calculated from the input image.

4. The output image is then displayed. (due to buffering theymay be delayed).

5. The SNR used in the wiener filter is then asked for. Note: Your should experiment by
changing the SNR to values other than that used in the noise, in particular what happens
if the wiener SNR is too high?

6. The reconstruction is then displayed
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