Topic 7: Digital Reconstruction

7.1 Introduction

In image reconstruction the aim is to remove or compensathéimaging system aberrations
and try and reform thalealimage being the image that would have been detected if thierays
was perfect. The simplest cases is where the imaging systknear andspace invarianso
that the aberrations can be characterised bfpaisit Spread FunctianThis is just the image
of a pointso typically can be directly measured or deuces form theesystesign, and thus
known or at least a good approximation is known. These assongovalid for a large range of
practical systems

If we can assume this, then we have a linear convolution nfod@hage formation where the
detected, digital image(i, j) is

g(i,j) = f(i,) ©h(i, j) +n(i, j)

whereh(i, j) is the point spread functionf (i, j) the ideal image andn(i, j) the, assumed,
additive noise, which is most cases we will assume is Gauggeo meaned noise which is
uncorrelated with the imaEe In all practical reconstruction system we require to know,
have a good guess fd(i, j) to get a good reconstruction. The general problem is that we
detectg(i, j) and wish to recovef (i, j).

Input image Linear Blur PSF Blurred Image

OTFH(k,I) FT Blurred Image

Figure 1: Example of a simulated linear blue of 9 pixels inhb@al and Fourier space.

The example of a linear blur is shown in figude 1 where the pspread function become a
horizontal line of 9 pixels. This is the point spread funotibat would result from a horizon-
tal translation of the camera during the exposure, and teguthe image being horizontally

1other noise models are possible, but vastly complicategbenstruction process.
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smudgedHere theH (k, 1) the optical transfer function has a characteristic Qipcofile in the
horizontal direction, which is also seen in the Fourier $farm of the blurred image.

-

Input image Defocus PSF Defocused Image

| fs\/‘o\/‘s

OTFH (k) FT Defocused Image

10

Figure 2. Example of simulated defocus in both real and Feospace.

The effect of the more common, and more complex, aberraticlefmcus is shown in figurld 2
where for this extent of defocus the point spread functiomddark rather than bright centre.
The optical transfer function, shown as a plot alongklagis shown a severe low-pass filtering
effect with multiple zeros andegativeregions where the contrast at that spatial frequency has
been reversed. This results in a severely blurred imageevhnest of the high frequency infor-
mation appear to have betrst However as we will see in this section, that even with a sever
blur like this, provided we know the point spread functiogcanstruction is still possible.

7.2 Inverse Filtering

The simplest scheme to recoverifig, j) having detectedj(i, j), is simple inverse filtering.
Due the the convolution relation in real space, in Fouri@cgpwve have that

G(k,1) = F (k1) H(k 1)+ N(k, I

where,since we knowu(i, j) we know, or can calculatd (k, 1), therefore the simplest estimate
for Fourier transform of the ideal image is given by

G(k, 1)
H(k,1)

N(k,1)
H(k,I)

Ek 1) = —F(k 1)+

where, clearly ifN(k,1) = 0, then we have a exact solution, so problem solved, sinceawe c
simply inverse transform to gdt(i, j) the idea image.
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This scheme has a major problem since even for tiny amountsisgé,n(i, j) being Gaussian
random noise, then
(IN(k,1)|?) ~ constant

at all spatial frequencies, which as shown in figlire 3, evenafo ideal imaging system,
H(k,1) — O at high spatial frequencies. So the term will dominate ghHrequencies and
corrupt the reconstruction.
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Figure 3: Plot of the Optical Transfer Function of an ideahging system.

In practice the situation is worse than this, since all systehere reconstruction is needed,
H(k,l) will have multiple zeros and negative regions as shown inré@l It is thenegative
regions that result in the severe blurring evident in figursirke this corresponds to these
spatial frequencies having their contrast reversed.
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Figure 4: Plot of the optical transfer function associatetthwefocus showing multiple zeros
and negative regions.

The simplest solution to this problem is to modify the ineefiter to toignore the regions
whereH (k,1) is small and the noise therefore dominates by taking,

Fii,j) = ﬁg:i; for [H(i,j)[*>T
=0 for |H(i, )|>< T

where the threshold@ is chosen so thai ~ |N(i, j)|?. We can then form the reconstruction
f(i,]) by inverse Fourier transform. The reconstruction of theuated linear blur shown
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in figure[d is shown in figur€l5. The reconstruction is reastmdiut the sharp threshold in
Fourier space results in regions of zerd-ifi, j) shown in figuréb (d) which give rise tinging

in reconstructiorf (i, j) shown in figurd® (c). This threshold inverse filter can bemijzed by
careful choice of threshold, but will always still suffeofn some ringing which severely limits
its use.

(c) Reconstruction (d) Fourier Transform

Figure 5: Threshold inverse filter of the simulated linearrldhowing significant ringing.

7.3 Wiener or Optimal Filter

The Wiener filter aim to solve the main problem of control ofiseohighlighted above by
forming a reconstruction that isleast squaregstimatef (i, j), of the ideal image (i, j), so
that,

(FG, 1) — (i, )%  Minimum
which can beunedfor different noise levels, and should therefore be appledor a large
range of known point spread functions. To implement thi§ingean optimal filtery(i, j) such
that the least square reconstruction is given by

fi, =9, )oyi,j)
We also have that the defected image is given by
g(i, J) = £, ) ©h(i, j) +n(, j)

The aim is now to find/(i, j), such that the difference between the reconstruction amaital
image is minimised.
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We need to consider this problem in Fourier space where we theat,
Gk, 1) =F(k1)H (k1) +N(k1I)
therefore by substitution, we have that the in Fourier sphe&econstruction is
F(k,1) =Gk DYk D =FkDHKDY(K)+Y(kI)N(KI)

Since we know that the Fourier transform is unitary, themehg thesameinformation inReal
andFourier space; therefore if two solutions are close together ingpate, they will also be
close in Fourier space, we can therefore perform the mirtigs in Fourier space to give,

(IF(k,1)—F(K1)[Z)  Minimum

whereY (k,1) is the minimisation variable. We know that the mininfimill occur when the
differential with respect to the minimisation variable &ra, so we therefore have that

o , -
sy ([F=FI*)=0
which substituting fof gives that
%QF—YHF—Y N) =0

We can now expand the square, and noting that the noise ipendent and zero meaned so
that(N) = 0, we get that

% (Y Y W[ =Y*H* ~YH+1)=0
where we have that
INJ?
|F[2
We note thal is complex, so we explicitly writéY|> =Y Y*. Now by differentiation, by we
then get that,

W2 = H2+

oY* ey Y
~ {|YW[*-H D +5y <Y W[Z—H][)=0

We note that this is of the form

at+a =0
so thatbothpartsmustto zero. Now ifY (k,1) # Constarfl, then we must have that

oY aY
3y #0 and W#O

which gives a solution fo¥ (k,|) the optimal filter that minimised the distance betwé€k, )
andF (k,1) is given by

_ HA(k 1)
YD = ik
which, substituting back fgw (k,1)|? can be written as:
Y(kl)=— M (k7|:\)|(kl)|2
H(k. )24+ 1223 /1

where||? are thePower SpectrumThis gives us théull solutionto the minimisation, but to
actually apply it we need take some assumptions and essmate

20r maximum
3the trivial solution
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7.3.1 Estimates for the Wiener Filter

The expression for the optimal filter is in termsldfk, 1) the optical transfer function of the
system|N(k,1)|? the power spectrum of Noise, and a|§dk,1)|?> which is the power spectrum
of theideal reconstructed image. In any practical reconstructionesgste either know, or can
measure théoint Spread Function: (i, j) so we can calculate theptical transfer function
H(k,1). We are assuming Gaussian Additive noigg j), which gives us thatN(k, I)|? ~
Constant, then from Parceval's theorem give us that

IN(k,1)|>=02 Variance of Noise

The problem term igF (k,1)|? the power spectrum dfleal image which clearly we do not
know, so have to make approximations. There are a range asilpesapproximation, these
being

1. Smoothed version df5(k,1)|?, so the power spectrum of the detected image. This is
valid provided thaH (k,|) has no zeros, however in most practical cases, such as defocu
or linear blur,H (k) doeshave multiple zeros, so this scheme does not work.

2. Approximate|F (k,1)|? by Negative Exponential This assumes that the image is frac-
tal consisting of a series of repeating shape at ever dengessale. This is a reasonable
model for many natural scenes such as aerial photograpimumerically there are prob-
lems close t@0,0)).

3. Approximate|F (k,1)|? by a Gaussian which is the mathematically easy solution that
corresponds to gypical power spectrum with most power at low frequencies.

4. Take|F(k,1)|? ~ constant, which initially look a very poor model since it @aily as-
sumes that the image is uncorrelated random noise.

In practice quality of reconstruction only weakly depericmfunction form taken fofF (k, 1)|?
and in most cases the apparently crudest of it bemgstantgives the best results. Given this
the Wiener Filter is frequently written as

H* (k1)
HKDI2+ g

where SNR is chosen to give the best visual reconstruction.

The result of applying this filter to the linear blur shown igure[l and defocus shown in
figure[2 is shown in figurEl6 using SNR 1000 which is equivalent tno noise This shown
essentially perfect reconstructions and their associgtetier transforms shown none of the
sharp discontinuities evident in the thresholded invetta fin the Fourier plane of the defocus
reconstruction there is some evidence of low-pass filteding toH (k,|) being very small at
high spatial frequencies, but it still gives an excellembmstruction.

Y(u,v) =

7.3.2 Effect of SNR on Reconstruction

The exact effect of the SNR term in the Wiener filter consiaucivill depend on the shape
H(k,I) of the system. but we can gain insight by considering theipemd typical case of
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Defocus Image Fourier Transform
Figure 6: Low noise Wiener filter reconstructions of line&urtand defocus.

defocus of a squafidens. This is shown in detail in figui@ 7, where the the CHRY) is shown
in[4 (a) being the same transfer function used in the previaiscus examples with severe
attenuation of high spatial frequencies, multiple zerod eegions of contrast reversal. The
shape off (u) the Wiener filter is plotted ial7 (b) to (d) for SNR in range-1256. At low SNR

is filter correct the regions of negative contrast, so wilireot the worst aspects of the blurring,
but does little to enhance the high spatial frequencieslendtihigh SNR is the high spatial
frequencies as also enhanced. This is as expected, sirove SNR the image will be severely
corrupted with noise which has most effect at high spatejdiencies, so enhancement of these
high frequencies will simply enhance the noise. Similatipigh SNR there is little noise so it

is safeto enhance the high spatial frequencies.

We can consider the overall effect blur plusreconstructiorsince in Fourier space, ignoring
noise, the reconstruction is is given by

Fk,1) =Yk DGk 1) = (Y(kIHK))F(Kk]I)

so the overall effect of of blurring the image and then retmasion with the Wiener filter is
given by byY(k,1)H(k,I), which can be plotted for a range of SNRs as is shown in figlre 8.
This shown, in figur&l8 (a) that at low SNR the combination ékesa low pass filter which
severely attenuates the high spatial frequencies, so igilifccantly blur the image edges. As
the SNR rises the low pass effect reduces, so that in figurg ghéceffect of the blur and
reconstruction is almost flat except for the regions whé(a) — 0 where the information is
totally lost in the initial blur, and is therefore also lostthe reconstruction. These graphs show
that the Wiener filter isvell behavedat all SNR introducing dow passeffect when the images

4The results for a more conventional circular lens are alnaesttical butH (k,I) is a much more complex
expression.
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Figure 7: Shape of Wiener filter for defocus at various SNR,

is noisy to prevent amplification of noise in the reconstrgtwhile at high SNR enhances all
available information back to as close as possible to thgral, ideal image.

7.3.3 Modified Wiener Filter

We have seen above that for low(ish) SNR the Wiener Filtes asta low pass filter that will
tend to blur edges, so we can consider trying to add an additamnstraint the the minimisation
to counteract this effect. For and imagex,y), we have,

of(x,y) af(x.y)

5 =7 MuF(uv)} and Y = 7 H{VvF(u,v)}

so that
0f(xy)| = F H{wF(u,v)} where w=/u2+V2

where we have already seen thatf (x,y)| is a high-pass version of the image, so enhancing
the edged.

So to enhance edges, while removing the blur we can modifynmgation in Fourier space to
([F (u,v) = F(u,v)[?) + A (JwF|)
This “can be shown” give,

H* 1
Y(u,v) =
W2\ 1A%
W5
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Figure 8: Overall effect of blur and reconstruction at a @i SNR

wherewy is the band-limit of the reconstruction system, and ranget+1. We therefore have,

A =0 Unconstrained Wiener
>0 Edges enhanced Wiener
< 0 Edges reduced Wiener

In practical cases the effect of varyiagwill depend in the form oH (u,v) and the SNR. This
modification gives a useful extra parameter to optimisefuged to excessively enhance edges
when SNR is low results in significant enhancement in theenois

7.4 TheCLEAN Algorithm

The inverse and wiener filters are both linear Fourier spdisdiwhich assume the degraded
image contains all the information about the ideal imagatthas beerscrambledby a known
point-spread function. If however the degraded image is essalt of areas of the Fourier
space missing, such as found in tomography or radio astrgnihren the linear filters will not
produce any sensible reconstruction and we have to coraligenative schemes.

A typical scenario is shown in figufé 9 which shown an ideal steage in figurdD (a) and its
Fourier transform ifll9 (b). If the data is collected in Fousipac over a limited region, in this
case half the Fourier plane inb@w-tiepattern as shown {d 9 (c), then the collected image is as
shown in(® (d) showing considerable artifacts includingstess being elongated and spurious
ringing effects.

The simplest scheme to deal with this type of reconstrugtitime CLEAN algorithm originally
designed to deal with radio astronomy data. We can assumm#ge consists of a collection

5See next section on tomography.
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(c) Collect FT space (d) Collected Image

Figure 9: Result of simulation where large sections of theriéo plane are removed showing
a degraded image.

of isolatedstarsconvolved with a point spread function as shown in figude 1@e &im of the
CLEAN is searches for point spread functions in real spapatimage andeplacesthem by
stars or d—functions in the output image.

o D = | X X
PSF X)(

Stars field Detected Image

Figure 10: Model behind the CLEAN algorithm.

Assume that PSF is sharply peaked in the centre, then the GLEZeme is simply imple-
mented by, then scheme is:

1. Locate Maximum value in image.
2. Record location and height of PSF.
3. Subtract scaled PSF from image at that location.

4. If any peaks left, go to (1)
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Looks very simple, but does it work provided the imaging system matadhesunderlying
model.

To get this to actually work well, we need to add a variabldisggparameter when subtracting
the point-spread function, you typically remove 80% of theximum peak found, and you
also need care in when to stop stop searching for more pagiisally when the peaks left are
comparable with the variance of the noise. Reconstructidineodegraded image from figulce 9
is shown in figurd_Tl1 with the point-spread function showidh(lt) and the reconstruction
in @ (c) which consists of a set @&functions. Examining the Fourier transform of the
reconstruction if11 (c) shown that data has hieégrpolatedinto the two blank regions in the
Fourier transform of the collected data showaflin 9 (c), that tve get a consistent image which
differs significantly from the linear filtering processesBias the Wiener filter which would
have left these regions blank. The final reconstructionislg smoothed by convolution with
a Gaussian to give the reconstructioriim 11 (e) which smoatitshe isolated spikes making
the image easier to understand.

(c) Reconstruction

(d) FT of Reconstruction (e) Gaussian Low-pass

Figure 11: Example of reconstruction using the CLEAN altjon.

7.5 Maximum Entropy

One of the most powerful reconstruction schemes is to masdrtieentropyof reconstruction
subject to certain constraints, usually that it closely achas the ideal detected image. This
has the effect of producing tremoothesimage consistent with the observed data. To see this
consider the definition of entropy being, of a two dimensiamage as begin

Hf = —(p(I,J)|ng(I,J)>
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where i)
- iy ]
L)) =
PUD = Rt )
which can be considered apebability since it is normalsied with
N N

-1
;j;p(l j)

Let us initially maximiseH simply subject to the constraint that the summation oveittage
is constarf. Consider two pixels locations &tl andm, mwith p(k,1) & p(m,n) as shown in
figure[I2. If we move an amountfrom one to the other, so that

pk,1) — pkl)—A
p(mn) — p(mn)+A

then provided thah is small, we can find the effect &f; as can shown to be

Hf = Hs +Alog(&<:]’lr3)>

so that
Ht >H; iff p(k,I1) > p(m,n)

So byreducingpeaks andncreasingtroughs the maximiskl;. If this processes is continued,
then the global maximum must be where there arpeaksor troughs so when

o 1
p(i, j) = constant= N2

which corresponds to themoothest possible imaggven the simple constraint. This simple
example illustrated that maximisirantropyhas the effect of smoothing the image.

p(k.1) ?
A

p(m,n)

Figure 12: Maximise the entropy subject to the pixel sumaraktieing constant.

7.5.1 More Practical Entropy

A more flexible and practical scheme uses an alternative itdefinof entropyof an image
f(i,]) being,

He = —(f(i,]) [log(f(i,])/A)—1])
whereA is theaveragebrightness background intensity of the image. This deinitias similar

mathematical properties to the conventional statistibgbrs definition oentropybut withtwo
important differences differences.

5We will consider more realistic constraints shortly.
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1. Normalisation constraint removed, which now is typigaticorporated in constraints on
reconstruction.

2. Free parametek to characterise image.

This alternative definition is more applicable to real syste

7.5.2 Max Entropy Deconvolution

The most common use of theaximum entropys as a constrain in deconvolution of a point-
spread function in the presence of noise with the aim of produthesmoothesimage con-
sistent with the observed data. In addition the()oip the expression also has the additional
useful property of forcing the reconstruction to be poﬂjv

The usual image model is just
g(i,J) =h(i, ) © £, ) +nd,j)

If the reconstruction is given b_\f(i, J), then theideal detected image, without the effect of
noise, must be given by,

§(i, §) = hi, ) o (. j)
so for f (i, j) to be a valid reconstructiomi’ j) must closely approximaigi, j). One possible
measure is the least squares difference being

E:<mmn—wa>

o3

wherea? is variance of the noise, so the more noise we expect in thersythe more the
variation that is allowed. So to get tmeaximum entropyeconstruction subject to it being a
valid reconstructiorwe can found by maximisation of

Q(f) =H(f) —AE(f)

whereA is a constant used to control the reconstruction.

This relation does not have a analytical solution tamh be showito be solvable digitally by
steepest decent to give iterative scheme of

fltl = f~k+Aexp{—%h® (6—g) }
n
where we have that
§=ho f

This scheme requirk(i, j) the point-spread functiow?, the variance of the noisé the image
background, and© the starting image condition, to be known typically where tygically
take asf® = A a constant as the starting condition. A typical example @shin figure[IB
where the car number plate is severely blurred in the orlgmage are clearly readable in the
reconstruction.

"This is often a problem in linear filters, such as the Wiengrfiwhere ringing can result in negative regions
in the reconstruction.
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Figure 13: Example of maximum entropy deconvolution froonirSkilling et al. Cambridge.

Maximum entropy is a computationally very heavy algorithimthwwo convolutions per itera-
tion, and typically many hundreds of iterations to form aomstruction. This scheme is also
difficult to make numerically stable, and in practice th@alue and\ in the definition ofen-
tropy have to be carefully controlled and modified throughout teeations to give a sensible
solution. On more significance is that in practice this atpon will converged to ayoodand
plausible solution even i(i, j) is NOT well known making it the ideal choice for reconstruc-
tion when the details of the imaging system are not precisebyvn.

7.6 Geometric Image Correction

Many imaging system suffer from geometric distortion. Ttés be as a result of aberrations
in the imaging system, for example with ultra-wide angleskes straight lines are images as
curves, or as a result of the geometry of the imaging systémngxample a satellite image
of the curved Earth. In all such cases the system now lgsaae variantPSF with differ-
ent imaging characteristics is different part of the imagethese is no deconvolution based
reconstruction scheme and other methods have to be found.

Detected Reconstructed

7—< )

I

a(i,j) £(i.j)

Figure 14: Re-sampling of a geometric distorted image.

Consider problem asvo-dimensional curve fittingnto a non-linear sampling grid. If the
detected image ig(i, j) then we define twalistortion functions fi, j) & s(i, j), such that, as
shown in figurd_I4, thelealimage is

f,j)=g(rs)
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This formulates the problem as re-samplai{g j) on a grid defined by(i, j),s(i, )
Before considering how to calculate the re-sampling funddir (i, j),s(i, j), consider their
functional form. If the geometric distortion is ontsanslationthen we simply have
r=i4+a and s=j+bg

which for the more general case thnslation scale& Rotation we need six parameters
giving,

r=ap+ai+aj and s=bo+bii+byj
which will give the type of linear warp as shown in figlird 15.

Grid Image Linear Warp

Figure 15: Example of a linear warp characterised by sixpatars.

A simplest example of a linear warp is an image rotation wliien® a rotation o the param-
eters are

a; = cosb b1 = —sinB
a, = sinBd b, = cosB

71\

i
14
R LYY

5%,

Figure 16: Rotated version of the toucan withk= 30°.

The next level of geometric correction to correct to geomaetistortions ofskewinghave 12
parameters giving expression fqii, j), s(i, j) given by,

r = ap+agi+ayj+asi’+asj’+asij

s = bo+bii+byj+bgi®+baj?+bsij
which give non-linear warping as shown in figlird 17. This soadcheme used in computer
graphics to wrap and image round a three-dimensional aljgstalso possible to go to higher

order and to include cubic terms which results in 20 pararset€his is not commonly used
since in most practical cases good results can be obtairtbdivei simpler 12 parameter model.
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Figure 17: Grid and toucan image after warping with twelveap@eter non-linear geometric
correction functions.

7.6.1 Calculation of Geometric Distortion Parameters

In some cases, where the optical imaging system is well knawes possible to calculate
parameters directly from the system design. This was plessilold video cameras where the
detection tube had a curved front, or for a satellite is inaovkn orbit with respect to the Earth,
for example a geostationary weather satellite forming aagenof the whole Earth disc and we
want to form a geometrically correct image of UK.

In most cases we do not know the distortions analytically thweg have to be found from the
distorted image. To do this we assume we can lobataownfeatures with locations

(o) k=1,....M
while we assume that theiue locations are at,
(i, i) k=1,....M
as shown in figuiel8. So if the warping parameters are catinectwe have that
r(ik,ik) =k Sk, k) =

which is a set of coupled non-linear equations which can led ts calculate the; andb;.

r];’Sl ‘ LS " ’jﬁ 2.2

— \ ¥

DHD

-« r3 153 / -~ i3 ,j3

rO ’a) io ,jo
Figure 18: Location of known features are their true loaatiags a geometrically distorted
image.

In practice it is better to measumeany pointon the image and estimate parameters by min-
imisation of the least square errors given by

M M
€= (re—rlii)? and &= Y (sl ji) )’
k=1 k=1

School of Physics DIA(U01358) and TOIP(P00809) Revised: 30 July 2006



Clearly for a 12 parameters kitrainimumof 12 points are needed but usually take more than
100 points spread over thmportantregions of the image. This techniques is widely used
in satellite data and preparation of images for automatip making with either manual or
automated location of the control points.

7.7 Re-sampling Procedure

To implement geometric correction we require to be able tmfo

where, in general(i, j) ands(i, j) will not be integers so will not fall on grid points, so must
interpolate between grid points from a continuous appratiom of the detected image. We
know, from previous that the continuous approximation gitg

a(x,y) =h(x,y)©g(, j)

whereh(x,y) is the interpolation function. In most practical systentaizeroor first order
interpolation, being either the value of the closest pixethe weighted of the four nearest
neighbours. This can result is some aliasing which can baeeviin the Fourier transform
of the geometric corrected. The Fourier transform of thated image in figurEZ16 is shown
in figure[I9. The rotation usezkroorder interpolation in real space which results in a stray
horizontal bright band and some evidence of a vertical bandght the centre of the Fourier
transform.

Figure 19: Fourier transform of the rotated toucan imagenshoe-sampling error only the
horizontal.

In addition in many practical cases values@f j) & s(i, j) may be outside the known range
of the detected image data, so foNax N image may be outside the range-ON — 1. There
are two possible solutions to this, being

1. Cyclic Wrap roundvhere we assume the
9(N+i,N+j) =g(i, ])

althoughcorrectfrom a sampling viewpoint, frequent odd results obtainedlasvn in
figure[20 where the toucan image is repeated in two dimensions
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2. Zero Padwhere we assume that
g(r,s) = 0r or soutside image

which will give spurious boarder aferoround parts of image, has to be allowed for,
especially if then processed by edge detectors.

So either solution is ideal, they both have different errors

Figure 20: Effect of cyclic wrap round in two dimensions

7.8 Summary

In this long section we have covered

Inverse Filtering
Optimal or Wiener Filter
CLEAN reconstruction.

Maximum Entropy Reconstruction

a & w0 nhoRE

Geometric Image Correction
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Workshop Questions

7.1 Shape oH (k,I) for linear blur

For a 256 by 256 image convolved with a linear blur with a Iéngt M pixels, calculate the
analytical expression fdd (k,1). Sketch this function and discuss how the first zero is latate
to the length of the linear blur.

7.2 Wiener Filter Simulation

Try thewi ener filter simulation programme to experiment with the effechoise levels and
SNR parameter in the Wiener Filter.

The program is based on linear horizontal blur PSF and ogees follows:

1. Initially asked for an input “ideal” image. THeucan. pgmis a good start.

2. Asks for size of horizontal blur in pixels. Blur functiog & horizontal line of the specified
length, 1 pixel wide. (Try 10 to 20 pixels).

3. Optionally adds Gaussian signal dependent noise to gspeeified SNR. The added

noise has standard deviation,
Of

On= =
"7 SNR
whereai is calculated from the input image.

4. The outputimage is then displayed. (due to buffering thay be delayed).

5. The SNR used in the wiener filter is then asked for. Note:r¥ould experiment by
changing the SNR to values other than that used in the noigarticular what happens
if the wiener SNR is too high?

6. The reconstruction is then displayed
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