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Conventional ecological models[1-4] show that complexity destabilises food webs, 

suggesting that food webs should have neither the large number of species nor the 

large number of interactions.  However, in nature the opposite appears to be the 

case.  More recent work[5] shows that the introduction of nonlinearity and weak 

interactions can enhance stability, and the observation of weak interactions in real 

systems is taken as justification for this.  Here we show that if the interactions 

between species is allowed to evolve, such stabilising feedbacks and weak 

interactions emerge naturally.  Moreover, we show that trophic levels[4] also 

emerge spontaneously from the evolutionary approach, and the efficiency of the 

unperturbed ecosystem increases with time.   

Ecosystems are a classic example of complexity[6], being formed from a myriad of 

interactions between various species.  The mathematical study of ecosystems has a long 

history[1-11], dating back to the work of Lotka and Volterra[7,8]. Such models tread a 

delicate balance between including so much detail that they lose the capability to make 

qualitative predictions, and being so simple as to be wholly wrong.  Striking features of 

ecosystems are their tendency to be arranged into a heirachical structure with different 

trophic levels, its development of many complex interactions, and its chaotic population 

dynamics.  In setting up a mathematical model, it is necessary to decide which of these 

observed qualities will be built into the model, and which (one hopes)  will emerge from 

solving the model.  For example, in May’s work based on random matrices the trophic 
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structure was not assumed, but the number of interactions and their distribution of 

strengths was.  May showed that such simple ecosystem models captured chaotic 

population dynamics and stability[1,2].  Further work by Pimm and coworkers 

[4,6,12,13] showed that webs with an imposed heirarchical trophic structure (i.e. the 

absence of “trophic cycles”: formally defined by loops in the directed graph) were more 

stable than random webs.  However, large model food webs still tended towards 

instability.  Subsequently, McKane and coworkers[14] investigated webs created by 

continuous introduction and extinction of species of preset trophic level and 

interactions,  success depending on population dynamics. These webs evolve to contain 

large numbers of species, and are persistent even though species are continually being 

introduced and going extinct. However, in all of these models increasing the number of 

interactions per species leads to instability.   

McCann et al addressed this latter issue by investigating simple webs with weak 

interactions[5], showing that weak interactions act to dampen oscillations and stabilise 

highly connected systems.  Their argument for weak interactions is based on studies of 

interaction strengths in real food webs. 

Here we show that stable, highly connected food webs with chaotic dynamics and many 

weak interactions arise from a generalised Lotka-Volterra model[4] with evolution of 

the interactions strengths (box 1). 

Our calculations differ from previous work primarily in allowing evolution of the 

interaction strength. Such evolution may arise from various biological phenomena, 

including genetic and behavioural evolution, and changes in the spatial overlap of 

populations.. The interaction strength represents the balance of power between the 

species, each species tends to evolve more effective means of dealing with the other, but  
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the interaction strengths, representing differences in effectiveness may increase or 

decrease.  It cannot, of course, change sign as the role of predator and prey cannot be 

reversed. We assume that the overall effect is that large populations of predators 

become less well adapted to capturing rare prey, since other food sources are available, 

while small populations of prey become better able to avoid their major predators. Thus 

we simulate coupled population and evolutionary dynamics, starting with a pool of  

species and eliminating any population drops below a minimum threshhold. 

Preliminary calculations with constant interaction strengths showed that this strategy 

produces large, feasible, viable food webs, but that the complexity of the interaction 

network remains low, on average just one link per species, independent of web size.  

This is consistent with previous numerical work on evolved webs [14] and the exact 

result for random webs[4].  Hence, as with all previous models, selection by extinction 

of failing species does not reproduce the observed complexity. 

By allowing the interactions to evolve, we introduce one new parameter (the interaction 

evolution rate). We also eliminate two assumptions – neither the number of interactions 

per species nor the distribution of interaction strengths need be determined a priori – the 

system is able to evolve its interactions or make them so weak as to effectively remove 

them altogether.  The model also does not preassign trophic levels or (almost 

equivalently) preclude trophic cycles. 

 

We find that in our evolving-interaction model, when very weak interactions (less than 

0.0001 of the maximum) are neglected, a cycle-free trophic structure with chaotic 

dynamics almost invariably emerges (Fig.1).  Moreover, the distribution of interaction 

strengths (Fig 2) exhibits a power-law tail with an exponent of –0.83, independent of 



4 

web size (for large webs).  This means that the predators obtaining most of their 

resources from a few strong interactions; the effect of the many weak interactions is to 

stabilise the web, particularly by becoming stronger in times of declining population. 

 

Behaviour of our food webs can be monitored by the flow of resources through the 

system[4].  We monitored this during our simulations and found a remarkable result – 

the total flow of resource (and hence total biomass) increases with time reaching a 

plateau after many thousands of steps – the steady-state link-strength distribution 

appears to maximise the use of resource.  This type of optimisation is consistent with 

other ecological models [15,16] 

In sum, we have shown that simply by allowing the strength of interactions to evolve in 

a GLV model, several features of observed food webs emerge spontaneously.  These 

include chaotic dynamics, maximal use of resources, stability engendered by many 

weak links and absence of trophic cycles.  While previous models have shown some of 

these phenomena, others have had to be assumed in the formulation of the models.  This 

work emphasises the powerful effect of evolution in structuring the food web patterns of 

nature. 

Mathematical details. 

Lotka-Volterra-type models [4] consider populations as their basic objects, 

modelling the interactions between the various populations. The Lotka Volterra 

model[7] considers two species with populations x1 (prey/autotroph) and x2 

(predator/heterotroph). x2 has constant death rate, c and per capita reproduction 

proportional to the amount of prey abx1.  x1 has a per capita death rate due to 

predation by x2 and a regeneration rate constrained by environmental resources 
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as described by the logistic map. This gives the following equations for two 

species: 

dx1/dt = gx1- gx1
2/K - a x2 x1;      dx2/dt= a b x1x2 - c x2. 

This model can be readily generalised to N species. 

For autotrophs, with x0 setting the limit on the population 

dxi/dt = xi – xi
2/x0 + ΣjMij xi xj.     (1) 

For heterotrophs, 

dx i/dt = ΣjMij xi xj - c xi.                (2) 

We take c=0.01 and draw the initial Mij randomly from a flat distribution between 

0 and 1.  This food web forms a directed graph where the species form nodes 

connected by interactions of strength Mij. We define resource flow (Fig 3) into 

the network as the sum of positive terms in (1) and (2) and flow out as sum of 

negative terms.  Predation is not efficient, and following Lotka Volterra we 

assume that for positive Mij, Mji=-b Mij with a birth efficiency b.  

We also allow for evolution of the link strengths Mij themselves.  Mij represent 

interactions between individuals of two species and its change therefore relates 

to the efficiency of predation.  We assume that the driving force for change in Mij 

is proportional to the number and strength of interactions NiNjMij.  Furthermore, 

it depends on the population size, larger populations become less well adapted 

to exploit rare prey. specifically it is proportional to (1/Ni-1/Nj). The net change in 

Mij is then 

dMij/dt = ε (Ni-Nj)Mij             (3) 
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where ε sets the rate of change.  We set an upper limit of 1 on the efficiency Mij 

- without this it is possible for species to evolve so as to exist on vanishingly 

small amounts of prey.  

In our calculations we iterate equations (1-3) in time, eliminating any species for 

which Ni<0.  The dynamics can be explored using an applet located at 

http://www.ph.ed.ac.uk/nania/ecosse/ecosse.html 

The chaotic population dynamics, which can be introduced either by finite 

timestep or a sharp upper limit on Mij, are crucial for power law dynamics:  if we 

take an alternate plausible evolution of the interactions for which Mij is self 

limiting: 

 dMij/dt = ε[(1/Ni)(dNi/dt) - (1/Nj)(dNj/dt)] Mij      (4) 

and use an infinitesimal timestep, then the dynamics tend to a fixed point rather 

than chaotic state. Trophic level structure and high numbers of weak 

interactions still occur in this model, but curiously, the evolved link strengths are 

now exponential rather than power law distributed. 
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Figure 1 Time series of the populations of typical species in a typical evolving food 
web.  Autotrophs are shown by thick lines, heterotrophs by thin. Units of population (N) 
are arbitrary, time is related to the death rate of 0.01 for heterotrophs (i.e. 100 is a mean 
lifespan). Both population dynamics and the dynamics of interaction stengths (not 
shown) are chaotic.  Graphs of typical food webs can be seen and generated at  
http://www.ph.ed.ac.uk/nania/ecosse/ecosse.html 
Figure 2.  Plot of the (log) number of links against their (log) strength.  The histogram is 
averaged over many snapshots from 100 webs of size a) 200 b) 100 c) 50.  In each 
stable web the link strength varies with time - the interaction strengths are instantaneous 
not time-averaged values.  
Figure 3 Total population as a function of time for a typical evolving web, and flow of 
resources into out of the web (see box for definition). 
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