Fundamental Theory

Modern theoretical particle physics describes nature through the language of quantum field theory (QFT.) Over the decades since QFT was first developed, physicists have been amazed at the range of phenomena QFT can describe - from boiling water to quantum gravity - as well as the subtlety of the description (for example, string theory in a certain spacetime is believed to be equivalent to an ordinary QFT which lives on the boundary of the string theoretic spacetime.) QFT has even become important in pure mathematics. But there is a great deal that is mysterious and the particle theory group in Edinburgh is at work at the frontiers of our understanding of the subject.

Scattering Amplitudes

Quantum field theories are quantum mechanical generalisations of the field theories familiar to James Clerk Maxwell, based on lines of force which exist even in the vacuum. Because they are quantum mechnical, predictions in QFT represent probablities that certain phenomena occur. Scattering amplitudes encode these probabilities, for example the probability that two electrons will scatter at a certain angle or that two gluons create a Higgs boson at the LHC. The study of scattering amplitudes has risen in prominence recently, spurred by the LHC, and has led to magnificent progress in our understanding of the quantum mechanical structure of field theory. One remarkable fact about scattering amplitudes is that, in a certain precise sense, scattering of fundamental particle in gauge theories "squares" into the scattering of gravitons, the quanta of the gravitational field. This is an example of the unity of physics: research motivated by the LHC has revealed new QFT magic in gravity. The group in Edinburgh studies amplitudes from a variety of points of view: we perform detailed calculations for the LHC, we develop new tools to sum up important effects which occur at different orders of the perturbative expansion of scattering amplitudes, as well as studying the connection between gauge theory and gravity.

Applications of Quantum Field Theory

We are interested in applications of statistical field theory methods to the turbulence problem. This includes both theoretical analytic work as well as high-resolution numerical simulations of the Navier-Stokes equation. We are also interested in the conseqences of turbulence in the Universe to the evolution of cosmic magnetic fields.

Physics Beyond the Standard Model

The Standard Model of particle physics has been extraordinarily successful at predicting the results of a host of experiments since it was first written down in the 1970s. But there are plenty of reasons for thinking that the Standard Model is an incomplete description of nature. Among the glaring problems are the fact that the Standard Model contains a large number of very peculiar numbers (such as the Higgs boson mass) and issues with gravity. But also the Standard Model does not explain the observed dark matter or the origin of mass. Our group is interested in theories which extend the Standard Model at energies we can explore at the LHC and which also address the problem of baryogenesis - why is there so much more matter than antimatter in the universe?

PhD project opportunities in Fundamental Theory

People in Fundamental Theory

Telephone numbers in the list below are shown as UK numbers. Callers from outside the UK should remove the leading zero and use the UK country code (+44).

NamePositionContact detailsLocationPhoto
Academic staff
Richard BallProfessor
JCMB
4420
Arjun BereraProfessor
JCMB
4412
Photo of Arjun Berera
Luigi Del DebbioProfessor
JCMB
4418
Photo of Luigi Del Debbio
Einan GardiDirector of Higgs Centre for Theoretical Physics
JCMB
4416
Photo of Einan Gardi
Saso GrozdanovErnest Rutherford Fellow
JCMB
Maxwell HansenUKRI Future Leaders Fellow
JCMB
4403
Photo of Maxwell Hansen
Franz HerzogUKRI Future Leaders Fellow
JCMB
Anton IldertonReader in Theoretical Physics
JCMB
4401
Tony KennedyProfessor
JCMB
4404
Photo of Tony Kennedy
Donal O'ConnellProfessor
JCMB
4405
Photo of Donal O'Connell
Brian PendletonSenior Lecturer
JCMB
4413
Antonin PortelliProfessor
JCMB
4417
Jenni SmillieReader
JCMB
4411
Photo of Jenni Smillie
Mao ZengRoyal Society University Research Fellow
JCMB
Roman ZwickyProfessor
JCMB
4415
Photo of Roman Zwicky
Research staff
Rafael AoudePostdoctoral Research Associate
JCMB
4311
Suddhasattwa BrahmaHiggs Fellow in Theoretical Physics
JCMB
4421
Job Leon FeldbruggeHiggs Fellow in Theoretical Physics
JCMB
4421
Riccardo GonzoPDRA
JCMB
4311
Karthik RajeevPostdoctoral Research Associate
JCMB
4311
Research postgraduates
Dogan AkpinarPostgraduate Student
JCMB
4301
Daniel BrenerPostgraduate Student
JCMB
4301
Giorgio FrangiPostgraduate Student
JCMB
4301
Maria PolackovaPostgraduate Student
JCMB
Mile VrbicaPostgraduate Student
JCMB
4301
Xinhao YuPostgraduate Student
JCMB