Statistical mechanics and hydrodynamics of bacterial suspensions

Condensed Matter journal club

Statistical mechanics and hydrodynamics of bacterial suspensions

Event details


Unicellular living organisms, such as bacteria and algae, propel themselves through a medium via cyclic strokes involving the motion of cilia and flagella. Dense populations of such “active particles” or “swimmers” exhibit a rich collective behavior at large scales. Starting with a minimal physical model of a stroke-averaged swimmer in a fluid, we derive a continuum description of a suspension of active organisms that incorporates fluid-mediated, longrange hydrodynamic interactions among the swimmers. Our work demonstrates that hydrodynamic interactions provide a simple, generic origin for several nonequilibrium phenomena predicted or observed in the literature. The continuum model derived here does not depend on the microscopic physical model of the individual swimmer. The details of the large-scale physics do, however, differ for “shakers” (particles that are active but not self-propelled, such as melanocytes) and “movers” (self-propelled particles), “pushers” (most bacteria) and “pullers” (algae like Chlamydomonas). Our work provides a classification of the large-scale behavior of all these systems.
PNAS 106 15567-72 (2009)


A. Baskaran and M. C. Marchetti

About Condensed Matter journal club

Given the diversity of research in the CM group, chosen topics vary widely. We tend to stick to high-impact journals - Nature, Science, PNAS and PRL have been popular - but this is not prescriptive..

Find out more about Condensed Matter journal club.