Emerging predictable features of replicated biological invasion fronts

Condensed Matter journal club

Emerging predictable features of replicated biological invasion fronts

Event details

Abstract

Biological dispersal shapes species' distribution and affects their coexistence. The spread of organisms governs the dynamics of invasive species, the spread of pathogens, and the shifts in species ranges due to climate or environmental change. Despite its relevance for fundamental ecological processes, however, replicated experimentation on biological dispersal is lacking, and current assessments point at inherent limitations to predictability, even in the simplest ecological settings. In contrast, we show, by replicated experimentation on the spread of the ciliate Tetrahymena sp. in linear landscapes, that information on local unconstrained movement and reproduction allows us to predict reliably the existence and speed of traveling waves of invasion at themacroscopic scale. Furthermore, a theoretical approach introducing demographic stochasticity in the Fisher-Kolmogorov framework of reaction-diffusion processes captures the observed fluctuations in range expansions. Therefore, predictability of the key features of biological dispersal overcomes the inherent biological stochasticity. Our results establish a causal link from the short-term individual level to the long-term, broad-scale population patterns and may be generalized, possibly providing a general predictive framework for biological invasions in natural environments.
PNAS 111 pages 297-301 (2014)
pdf version

Authors

Andrea Giometto, Andrea Rinaldo, Francesco Carrara, and Florian Altermatt

About Condensed Matter journal club

Given the diversity of research in the CM group, chosen topics vary widely. We tend to stick to high-impact journals - Nature, Science, PNAS and PRL have been popular - but this is not prescriptive..

Find out more about Condensed Matter journal club.