Designing Bijels Formed By Solvent Transfer Induced Phase Separation With Functional Nanoparticles

Condensed Matter journal club

Designing Bijels Formed By Solvent Transfer Induced Phase Separation With Functional Nanoparticles

  • Event time: 11:30am until 12:30pm
  • Event date: 14th June 2019
  • Speaker: (School of Physics & Astronomy, University of Edinburgh)
  • Location: 2511

Event details

Bicontinuous interfacially jammed emulsion gels (bijels) formed via solvent transfer induced phase separation (STrIPS) are new soft materials with potential applications in separations, healthcare, or catalysis. To facilitate their applications, means to fabricate STrIPS bijels with nanoparticles of various surface chemistries are needed. Here, we investigate the formation of STrIPS bijels with nanoparticles of different wettabilities, ranging from partially hydrophobic to extremely hydrophilic. To this end, the surface wettability of silica nanoparticles is tailored by functionalization with ligands bearing either hydrophobic or hydrophilic terminal groups. We show that partially hydrophobic particles with acrylate groups can impart short-term stability to STrIPS bijels on their own. However, to enable long-term stability, the use of cationic surfactants is needed. Partially hydrophobic particles require short chain surfactants for morphological stability while glycerol-functionalized hydrophilic particles require double chain cationic surfactants. Variation of the surfactant concentration results in various STrIPS bijel morphologies with controllable domain sizes. Last, we show that functional groups on the nanoparticles facilitate interfacial cross-linking for the purposes of reinforcing STrIPS bijels. Our research lays the foundation for the use of a wide variety of solid particles, irrespective of their surface wettabilities, to fabricate bijels with potential applications in Pickering interfacial catalysis and as cross-flow microreactors.

Event resources

About Condensed Matter journal club

Given the diversity of research in the CM group, chosen topics vary widely. We tend to stick to high-impact journals - Nature, Science, PNAS and PRL have been popular - but this is not prescriptive..

Find out more about Condensed Matter journal club.