# Universal survival probability for a d-dimensional run-and-tumble particle

#### Universal survival probability for a d-dimensional run-and-tumble particle

- Event time: 11:30am until 12:30pm
- Event date: 27th January 2021
- Speaker: Satya Majumdar (Université de Paris-Sud)
- Location: Online - see email

### Event details

We consider an active run-and-tumble particle (RTP) in d dimensions and compute exactly the probability S(t) that the x-component of the position of the RTP does not change sign up to time t. When the tumblings occur at a constant rate, we show that S(t) is independent of d for any finite time t (and not just for large t), as a consequence of the celebrated Sparre Andersen theorem for discrete-time random walks in one dimension. Moreover, we show that this universal result holds for a much wider class of RTP models in which the speed v of the particle after each tumbling is random, drawn from an arbitrary probability distribution. We further demonstrate, as a consequence, the universality of the record statistics in the RTP problem.

### About Statistical Physics and Complexity Group meetings

This is a weekly series of webinars on theoretical aspects of Condensed Matter, Biological, and Statistical Physics. It is open to anyone interested in research in these areas..

Find out more about Statistical Physics and Complexity Group meetings.